首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of temperature and concentration on rheological behaviour of freeze dried soursop juice concentrates were investigated using a rheometer over a wide range of temperatures (10–70 °C) and concentrations (10–50 °Brix) at shear rates of 0–400 1/s. The Power law is the best fitted model to the rheological data due to the high value of coefficient of determination (R2 = 0.9989). The soursop juice concentrates exhibited shear thinning or pseudoplastic behaviour with n < 1. The consistency coefficients dependency on temperature and concentration were well described by Arrhenius relationship and exponential relationship respectively. The flow activation energy of soursop juice concentrates were 8.32–30.48 kJ/mol. The superposition technique with Power law model sufficiently modelled the overall rheological characteristics of soursop juice concentrates into a single master curve using shift factors based on double shifting steps with R2 = 0.9184. This technique also showed that the soursop juice concentrates increases in viscosity and pseudoplasticity behaviour with concentration.  相似文献   

2.
Microfiltration (MF) is classified as a non-thermal process for the fruit juice industry. It could provide a better preservation of the phytochemical property and flavor of the juice. This work aimed to study the stability of phytochemical properties including vitamin C, total phenolic content, antioxidant capacity (2-Diphenly-1-picrylhydrazyl: DPPH, free radical scavenging capacity and Oxygen Radical Absorbance Capacity: ORAC assays), microbial and chemical–physical (color, browning index, pH and total soluble solid) properties of MF-clarified pineapple juice during storage at various temperatures (i.e. 4, 27, and 37 °C). The juices were clarified by microfiltration using hollow fiber module. The results showed that most of the phytochemical properties and soluble components were retained in the juice after microfiltration. No microbial growth was detected after 6 months of storage. The storage time and temperature did not affect total soluble solids and pH (P > 0.05). The color (L*) of clarified juice stored at 4 °C was lighter than the juices stored at higher temperature levels (P < 0.05). The phytochemical properties and total phenol content of the juice significantly decreased as storage time and temperature increased (P < 0.05). Vitamin C content was the attribute that affected storage time and temperature most as indicated by reaction rate constant and activated energy. Storage of non-thermally pasteurized and clarified pineapple juice at 4 °C was the most suitable since it allowed the best quality preservation.  相似文献   

3.
The steady-shear and small-amplitude oscillatory rheological properties of tamarind (Tamarindus indica L.) juice concentrate (TJC) were studied in the temperature range of 10-90 °C using a controlled-stress rheometer. Under steady-shear deformation tests, shear stress-shear rate data were adequately fitted to the Herschel-Bulkley and Casson model at lower (10-30 °C) and higher (50−90 °C) temperature range, respectively. The Carreau model was applied to describe the shear-thinning behaviour of the concentrate, and the model parameters estimated empirically showed temperature dependence. Oscillatory shear data of TJC revealed predominating viscous behaviour (G″>G′) at lower frequency range while the elastic modulus predominating over the viscous one (G′>G″) at higher frequency range. The Cox-Merz rule that relates steady shear and dynamic material functions was tested and not followed by most of the temperatures. The specific heat of TJC increased with temperature and the glass transition temperature of the product was found to be −70.74 °C.  相似文献   

4.
The rheological properties evolution, during the organogelation by cooling of candelilla wax (CW) solution in safflower oil, was studied using computational fluid dynamics (CFD). A simulated storage modulus (G′) model agreed satisfactorily with experimental observations. The gelation of 3% CW solutions was done using static conditions during the whole process (90–5 °C), or by applying a shear rate (180, 300 and 600 s−1) during cooling from 90 °C to 52 °C and then continuing the cooling under static conditions up to the final temperature (i.e. 5 °C). The proposed model predicts G′ evolution as a function of temperature, and considers the final torque (Γf) of the sheared stage as an inductor of molecular flow alignment. Predictions revealed that the final solid-like component (i.e. G′) increases as the shear rate increases up to a maximum for a shear rate of about 400 s−1. Then, final G′ value diminishes gradually, probably due to the destruction of microstructures that generate the gelation. The model was validated by graphical methods and variance measures. The results demonstrate the potential of CFD to allow the development of a model linking process variables (i.e. cooling and shearing) and rheological properties. This model can be successfully applied for process control purposes and for the design of organogels with predefined properties.  相似文献   

5.
Studies are lacking on the nonthermal pasteurization of liquid foods using UV irradiators that centrifugally form very thin films to overcome the problem of limited penetration depth of UV. Grapefruit juice inoculated with Escherichia coli or Saccharomyces cerevisiae was processed at the following conditions: UV dose 4.8–24 mJ/cm2; treatment time 3.2 s, cylinder rotational speed 450–750 rpm, cylinder inclination angle 15–45°, outlet temperature 11 °C, and flow rate 300 ml/min, and was stored for 35 days. Appropriate dilutions of the samples were pour plated with TSA and TSA + 3% NaCl for E. coli and Sabouraud dextrose agar (SDA) and SDA + 5% NaCl for S. cerevisiae. Nonthermal UV processing at 19 mJ/cm2, 450 rpm and 15° reduced E. coli in grapefruit juice by 5.1 log10. A dose of 14 mJ/cm2 reduced S. cerevisiae by 6.0 log10. Inactivation increased linearly with increasing UV dose. The inactivations at 600 and 750 rpm were similar, and were better than at 450 rpm. The results at 30° and 45° were similar, and were better than at 15°. The occurrence of sublethal injury in either microorganism was not detected. Storing UV processed grapefruit juice at 4 and 10 °C reduced the surviving E. coli to below 1 log10 cfu/ml in 14 days. Processing UV juice reduced the population of S. cerevisiae to less than 1 log10 cfu/ml where it remained for 35 days during refrigerated storage. These results suggest that grapefruit juice may be pasteurized using a nonthermal UV irradiator that centrifugally forms a thin film.  相似文献   

6.
Rheological behavior of date syrup is an important factor affecting the efficiency of sugar production and refining processes such as boiling, crystallization, separation and pumping. A rotational viscometer was used to characterize the flow behavior of date syrup solution at four different temperatures (20 °C, 40 °C, 60 °C and 80 °C) and four concentrations (17, 24, 31 and 39 °Brix). The samples were subjected to a programmed shear rate increasing from 10 to 100 s−1 in 2 min, held constant at 100 s−1 for 10 min and linearly decreasing to 10 during 2 min. The power law model was fitted to shear stress vs. shear rate data to obtain the consistency coefficient (m) and the flow behavior index (n). Both m and n were sensitive to changes in temperature and concentration. The apparent viscosity increases with increasing concentration of date syrup and a decrease in temperature.  相似文献   

7.
Ascorbic acid degradation kinetics of sonicated orange juice during storage were determined and compared to thermally pasteurised samples. Acoustic energy densities (AED) ranging from 0.30 to 0.81 W/mL and treatment times of 2-10 min were investigated. The degradation kinetics of sonicated samples followed first-order kinetics (R2 ≥ 0.91) during processing. During storage ascorbic acid degradation of sonicated samples followed the Weibull model (R2 ≥ 0.97) with β values ranging from 0.662 to 0.697. Comparatively, first-order degradation kinetics were observed during storage for thermally pasteurised (R2 = 0.98) and control samples (R2 = 0.96). Increased shelf life based on ascorbic acid retention was found for sonicated samples compared to thermally pasteurised samples. Predicted shelf life for sonicated orange juice ranged from 27 to 33 days compared to 19 days for thermally pasteurised juice during storage at 10 °C. These results indicate that sonication results in enhanced retention of ascorbic acid in orange juice during storage compared to thermal processing.  相似文献   

8.
Ingrid Aguiló-Aguayo 《LWT》2009,42(4):813-818
The effects of high-intensity pulsed electric field (HIPEF) processing (35 kV/cm for 1700 μs applying 4-μs pulses at 100 Hz in bipolar mode) on color, viscosity and PME and PG activities in strawberry juice were studied and compared to those of heat treatments (90 °C for 60 s or 30 s) through 63 days of storage. L and viscosity values of the HIPEF-processed juices were higher than those found in the thermally treated. In addition, HIPEF-treated juice exhibited lower 5-(hydroxymethyl)-2-furfural (HMF) concentration and browning index than heat-treated juices throughout storage. On the other hand, HIPEF-treated juice maintained low residual pectin methylesterase (PME) activity (13.1%) for 63 days, whereas in the case of the thermally treated, 22.2 and 48.8% was retained after 60 s and 30 s, respectively. Strawberry juice treated by HIPEF achieved lower residual polygalacturonase (PG) activity (73.3%) than those of heat-processed at 90 °C for 60 s (76.2%) or 30 s (96.8%). Thus, HIPEF could be a feasible alternative to thermal processing to minimize browning and viscosity loss in strawberry juice during storage.  相似文献   

9.
10.
This study describes the extraction and characterisation of cashew apple polyphenol oxidase (PPO) and the effect of wounding on cashew apple phenolic acid composition, PPO activity and fruit browning. Purification factor was 59 at 95% (NH4)2SO4 saturation. For PPO activity, the optimal substrate was catechol and the optimum pH was 6.5. PPO Km and Vmax values were 18.8 mM and 13.6 U min−1 ml−1, respectively. Ascorbic acid, citric acid, sodium sulphite and sodium metabisulphite decreased PPO activity, while sodium chloride increased PPO activity. Wounding at 2 °C and 27 °C for 24 h increased PPO activity but storage at 40 °C reduced PPO activity. Gallic acid, protocatechuic acid and cinnamic acid (free and conjugate) were identified in cashew apple juice. Cutting and subsequent storage at 40 °C hydrolysed cinnamic acid. 5-Hydroxymethylfurfural content in cashew apple juice increased after injury and storage at higher temperatures, indicating non-enzymatic browning.  相似文献   

11.
The influence of storing time and temperature on rheological behavior of egg yolk was investigated. The eggs of two brown egg-laying breeds (Bar Plymouth Rock and Rhode Island Red) were stored for 1, 2, 3, 4, and 8 weeks at constant temperatures: 4 °C, 8 °C, 12 °C, and 16 °C. The apparent viscosity was measured by a rotational viscometer as a function of shear rate. It was found that yolk samples exhibited shear-thinning (pseudoplastic) behavior. The shear-thinning behavior was fitted well into Herschel–Bulkley model (with a satisfying correlation of R2 > 0.95). For the selected shearing rate, viscosity was measured in relation to shearing time. The time-dependant viscosity decreased rapidly with time and, at lower share rates, reached an equilibrium state. The time-dependant viscosity was also found to decrease with storage time. The value of pH changed (increased) during storing. No clear dependence between pH value and viscosity was confirmed.  相似文献   

12.
Steady shear flow behavior of basil seed gum (BSG) was investigated between 0.5% and 2% (wt/wt) concentration and temperatures of 5-85 °C. BSG showed shear thinning behavior at all concentrations and temperatures. The Herschel-Bulkley model was employed to characterize flow behavior of BSG solutions at 0.1-1000 s−1 shear rate. The pseudoplasticity of BSG increased markedly with concentration. Flow behavior of 1% BSG indicated a higher viscosity of this gum at low shear rates compared to xanthan, konjac and guar gum at similar concentration. The activation energy of BSG quantified using an Arrhenius equation increased from 4.9 × 103 to 8.0 × 103 J mol−1 as concentration changed from 0.5% to 2% wt/wt. This indicated a heat-resistant nature of BSG. Increasing the apparent viscosity of BSG as temperature increase from 60 °C showed a sol-gel behavior of BSG based on dynamic oscillatory measurements. The static yield stress was obvious between shear rates 0.001-0.1 s−1 (9.98 Pa for 1% BSG at 20 °C). The existence of the yield stress, high viscosity at low shear rates and pseudoplastic behavior of BSG make it a good stabilizer in some food formulations such as mayonnaise and salad dressing.  相似文献   

13.
Pectinase cocktails, containing pectinases, hemicellulases, and cellulases are used in the production of commercial apple juice to reduce juice viscosity, increase yield, and to clarify the final product. The kinetics of inactivation of a commercial pectinase formulation was studied at 0.1–400 MPa and 55.0–85.0 °C. High hydrostatic pressure slowed the rate of inactivation of the pectinase cocktail treated at inactivating temperature conditions by up to 19-fold at 77.0 °C, 350 MPa compared to inactivation at atmospheric pressure at the same temperature. Apparent activation energies of enzyme inactivation at 200–400 MPa were lower (107.3–154.4 kJ mol−1) than at 0.1 MPa (195.6 kJ mol−1).  相似文献   

14.
Rheological properties in terms of steady state flow behaviours of extruded dispersions (rice flour/soy protein concentrate blend), were investigated using dynamic rheometry. The effects of concentration (2%, 5%, 7%, 9% and 11%) and temperature (25–70 °C) on the rheological parameters (yield stress, flow behaviour index) of the non-expanded pellet blend (12.5% protein) were determined using common rheological models. Steady-shear viscosities in a range of shear rate from 0 to 500 s−1 were observed as a function of concentration and temperature. From typical curves showing the dependence of shear stress on shear rate, it could be observed that all suspensions exhibited a non-Newtonian and pseudoplastic behaviour. The model that best fitted the experimental data at all temperatures and concentrations was the Herschel–Bulkley model.  相似文献   

15.
B.C.M. Salomão 《LWT》2007,40(4):676-680
Heat resistance of Neosartorya fischeri was studied in three different juices (apple, pineapple and papaya). The optimum heat activation temperature and time for the ascospores of the N. fischeri (growth for 30 days at 30 °C) was 85 °C for 10 min. Of the three juices tested, apple juice exhibited maximum 1/k values at 80, 85 and 90 °C (208.3, 30.1 and 2.0 min, respectively). The 1/k values for papaya juice (129.9, 19.0 and 1.9 min) and pineapple juice (73.5, 13.2 and 1.5 min) decreased with acidity and °Brix/acidity (ratio) level. The Z* values for apple, papaya and pineapple juices were 5, 5.5 and 5.9 °C, respectively. The sterilization F values (4-log reduction) for apple, pineapple and papaya juices were 56.3, 38.0 and 7.2 s, respectively. Considering the thermal treatments commercially applied to pineapple (96 °C/30 s) and apple juices (95 °C/30 s), it is concluded that such treatments will not guarantee that less than 1 ascospore in each set of 103 packs survive. Only the treatment applied to papaya juice (100 °C/30 s) will be sufficient because the F value is less than 30 s.  相似文献   

16.
The present work has evaluated the dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea) pulp as function of temperature (0-80 °C), as well as the applicability of the Cox-Merz rule. The product flow behavior could be well described by the Herschel-Bulkley’s model (R2 > 0.98), whose parameters were modeled as function of temperature (R2 > 0.91). The product has shown a weak gel behavior, with storage modulus higher than loss modulus in the evaluated frequency range. The storage and loss modules could be well described by a power function of the oscillatory frequency (R2 > 0.93), whose parameters were modeled as function of temperature (R2 > 0.97). Moreover, a power modified Cox-Merz rule could describe the rheological properties of S. purpurea pulp (R2 > 0.96). The obtained data are potentially useful for future studies on food properties and process design.  相似文献   

17.
The effect of temperature on the degradation of blackcurrant anthocyanins in a model juice system was determined over a temperature range of 4–140 °C. The thermal degradation of anthocyanins followed pseudo first-order kinetics. From 4–100 °C an isothermal method was used to determine the kinetic parameters. In order to mimic the temperature profile in retort systems, a non-isothermal method was applied to determine the kinetic parameters in the model juice over the temperature range 110–140 °C. The results from both isothermal and non-isothermal methods fit well together, indicating that the non-isothermal procedure is a reliable mathematical method to determine the kinetics of anthocyanin degradation. The reaction rate constant (k) increased from 0.16 (±0.01) × 10−3 to 9.954 (±0.004) h−1 at 4 and 140 °C, respectively. The temperature dependence of the rate of anthocyanin degradation was modelled by an extension of the Arrhenius equation, which showed a linear increase in the activation energy with temperature.  相似文献   

18.
The rheological behaviour of high ratio cake batters prepared with untreated and heat-treated wheat flours was analysed at different stages of the manufacturing process, namely slurry, (on aeration) foams and (with fat addition) aerated emulsions, featuring air volume fractions up to 0.50. Both steady shear and viscoelastic behaviours were studied. All materials exhibited shear-thinning behaviour at 20 °C over the shear rate range studied (0.07-10 s−1). The generalised Cox-Merz rule could be applied to all samples. Materials prepared with heat-treated flours exhibited greater stability, as indicated by slurry thixotropy and cohesive energy, and the change in apparent viscosity and air content of foams and aerated emulsions on extended mixing. Foams and aerated emulsions showed significant elastic behaviour with G′∼G″. The temperature dependency of aerated emulsions was studied by oscillatory shear testing from 20 to 100 °C and indicated three regimes in temperature dependence: below 40 °C G′and G″ were insensitive to temperature; between 40 and 70 °C the complex viscosity exhibited Arrhenius-type behaviour, while above 70 °C G′ and G″ increased as expected for gelatinisation and foam setting. The weak gel model for foods was used to analyse the latter data sets and confirmed that the gel network generated in aerated emulsions prepared with heat-treated flours was significantly stronger than those made with unheated flours. The differences between flour types were also observed in tests on un- and heat-treated flours obtained from a second and third harvest. The impact of these quantifiable differences in rheology on performance during baking is discussed.  相似文献   

19.
The present study involves the use of non-specific enzyme pullulanase (from Bacillus acidopullulyticus) to remove galactose residues from guar galactomannan to obtain modified guar galactomannan mimicking the functional properties of locust bean gum. The modified guar galactomannan blended with xanthan exhibited the rheological behaviour of elastic modulus (G′) greater than viscous modulus (G″) with a decrease in tan δ value similar to locust bean gum/xanthan blend. Also a twofold increase in the magnitude of elasticity compared to xanthan alone suggested the synergistic interaction with formation of three dimensional networks. The modified guar galactomannan with galactose content of 21% and M:G ratio 1:3.8, almost akin to locust bean gum, showed a better interaction with xanthan. Dynamic stress sweep study of modified guar galactomannan/xanthan blend with increased yield stress of 800 dynes/cm2 also indicated the synergistic behaviour. Modified guar galactomannan also revealed the maximum synergistic interaction with xanthan at a mixing temperature of 60 °C than at 20 °C, 30 °C, 40 °C and 50 °C, respectively. Modification of guar galactomannan by pullulanase is an alternative route to produce galactose-depleted guar galactomannan with enhanced rheological functionalities on co-gelation with xanthan, as a cost effective replacement to locust bean gum.  相似文献   

20.
Tamarind seed gum as seed polysaccharide from Tamarindus indica L. has been characterized for physicochemical and rheological properties in the present work. The structural analysis determined the presence of glucose:xylose:galactose in a molar ratio of 2.61:1.43:1.The Huggins and Kraemer plots obtained by capillary viscometry gave an intrinsic viscosity of 4.7 dl g−1 and the viscosity average molecular mass was calculated to be 9.18 × 105 g mol−1 using the Mark-Houwink relationship. The steady shear and dynamic viscoelasticity properties of tamarind seed gum in aqueous solutions at different concentrations were investigated at 20 °C using a Haake Rheometer RS75. The tamarind seed gum solutions clearly exhibited shear-thinning flow behaviour at high shear rate and Newtonian region occurred at low shear rate range, however, at higher concentrations, pronounced shear thinning was observed. The value of zero shear viscosity (η0) was estimated by fitting Cross and Carreau models. The specific viscosity at zero shear rate (ηsp0) was plotted against the coil overlap parameter (C[η]) and the slopes of the lines in the dilute and semi-dilute regions were found to be ∼2.2 and 4.3, respectively. The value of the critical concentration (C) was about 4.23/[η]. While, the mechanical spectra in the linear viscoelastic region of tamarind seed gum solutions showed the typical shape for macromolecular solutions. Plots of η versus γ and η versus ω were superimposable and hence obey the Cox-Merz rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号