首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
D Kim  SC Min 《Journal of food science》2012,77(9):E240-E246
Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. Practical Application: The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry.  相似文献   

2.
Storage stability of different round scad (Decapterus maruadsi) protein-based films including (1) control film without palm oil and chitosan, (2) film with 25% palm oil (glycerol substitution) and (3) film with 25% palm oil and 40% chitosan (protein substitution) was investigated. During storage (54% relative humidity, 28-30 °C), tensile strength (TS) of the films without and with 25% palm oil or 25% palm oil in combination with 40% chitosan increased continuously, while elongation at break (EAB) decreased markedly when storage time increased up to 8 weeks (p < 0.05). No changes in water barrier properties were observed throughout the storage time up to 4 weeks (p > 0.05). Film solubility slightly increased but protein solubility decreased continuously during storage (p < 0.05). All films became darker and more yellowish as storage time increased. When round scad muscle protein-based films were used to cover dried fish powder, the samples covered with the film containing 25% palm oil and 40% chitosan showed lower thiobarbituric acid reactive substances (TBARS) and yellowness than other samples during the extended storage up to 21 days (p < 0.05). No differences in moisture content of all samples covered with different films were noticeable (p > 0.05), except those covered with HDPE, which had the lowest moisture content. Thus, round scad protein-based film incorporated with palm oil and chitosan could be a promising packaging material to prevent lipid oxidation in oil enriched foods.  相似文献   

3.
Unripe banana flour and starch were used to formulate plasticized banana‐based films (flour film, PBF; starch film, PBS) with two types of plasticizers (glycerol, Gly; sorbitol, Sor) and a mixture of Gly‐Sor on film properties. PBS showed greater water barrier, elongation at break, toughness, and transparency, but lower efficiency in heat sealability than PBF. However, the easier and a higher yield in the preparation process of PBF lead to higher UV and visible light barrier than PBS which could be due to its protein content and the presence of phenolic compounds in PBF. Both banana films plasticized with Sor showed high glossiness, high efficiency in heat sealability, and mechanical and water barrier properties; however, the undesirable recrystallization of white crystals resulted in lower film flexibility. Thus, Gly‐Sor was preferred without change of water barrier but strengthened heat sealability. Therefore, banana‐based film might be considered as a green food packaging material.

Practical applications

Banana flour and starch from unripe bananas can be used as safe food ingredients for food products and as green biodegradable packaging materials. Banana flour film showed similar mechanical properties as banana starch film but involved easier processing and higher yield in the preparation of banana flour. Moreover, banana flour films had higher efficiency in heat sealability with the potential to protect the packed food from UV–visible light deterioration. Furthermore, an easier way to modify proper film properties is by the proper selection of the plasticizer. A mixture of plasticizers (glycerol and sorbitol) showed high potential to improve long‐term physical stability such as through UV–visible light prevention, and improved mechanical properties and heat sealability of plasticized banana‐based films. Briefly, plasticized banana flour film with a mixture of plasticizer will be potential, alternative biodegradable packaging material to reduce the use of nonbiodegradable synthetic plastic materials in food applications.  相似文献   

4.
The modification of soy protein isolate (SPI) with different amounts of a naturally occurring cross-linking agent (genipin, Gen) and glycerol used as plasticizer was carried out in this work. The films yielded were cast from heated and alkaline aqueous solution of SPI, glycerol and Gen and then dried in an oven. Total soluble matter, water vapor permeability and mechanical properties were improved by adding small amounts of Gen. These properties were not significantly affected (P ? 0.05) by additions exceeding 2.5% (w/w of SPI). The opacity and cross-linking degree were linearly increased with the addition of Gen, whereas the swelling ratios in water were decreased. All the films were submitted to degradation under indoor soil burial conditions and the weight loss of the films was measured at different times. This study revealed that the film biodegradation time can be controlled or modified from at least 14 to 33 days. The tests performed showed the potential of Gen to improve the SPI film properties, in which the possibility of employing such new films as biodegradable food packaging was raised.  相似文献   

5.
Protein films can be applied to improve food quality and to reduce packaging waste. To overcome their poor water barrier properties, lipids are often incorporated. The function of incorporated lipid depends on the interface between filler and matrix. This study aimed to tailor the properties of a protein–lipid film by designing the oil/water interface to see if the concept of inactive/active filler is valid. Therefore, we varied the emulsifier stabilizing solid lipid nanoparticles (SLN) to promote (via β‐lactoglobulin) or to minimize (via Tween 20) interactions between particle surface and protein. SLN were incorporated into protein films and film properties were determined. Addition of SLN led to significantly decreased water vapor permeability (WVP) of protein films. However, WVP was mainly affected by the emulsifiers and not by the lipid. Protein‐stabilized SLN (BS) replaced a lacking protein in the protein network and therefore did not influence the mechanical properties of the films at ambient temperature. BS‐composite films were temperature sensitive, as lipid and sucrose palmitate melted at temperatures above 40 °C. Tween 20‐stabilized SLN (TS) led to reduced tensile strengths, probably due to perturbative effects of TS and plasticizing effects of Tween 20. Dynamic mechanical analysis showed that TS and Tween 20 increased film mobility. Melting of lipid and emulsifiers, and temperature‐dependent behavior of Tween 20 led to a strong temperature dependence of the film stiffness. By designing the interface, particles can be used to tailor mechanical properties of protein films. Tuned edible films could be used to control mass transfers between foods.  相似文献   

6.
壳聚糖通过分子内和分子间氢键连接形成具有粘性的成膜溶液,流延干燥后可形成高透明度的可食膜.又因壳聚糖膜具有一定的机械性能、阻气性和抑菌性,已广泛应用于食品贴体包装,来提高食品质量.纯壳聚糖膜的力学性能、阻水性等不能满足理想包装的高保护性、高防潮性的要求,限制了其在食品包装方面的应用.在实际生产中,壳聚糖常与其他成膜材料...  相似文献   

7.
M.J. Galotto    P.A. Ulloa    A. Guarda    R. Gavara    J. Miltz 《Journal of food science》2009,74(6):E304-E311
ABSTRACT:  The effect of high-pressure processing on 2 plastic food packaging films, a biopolymer (PLASiOx/PLA) and a synthetic polymer (PET-AlOx), was studied. Samples in direct contact with olive oil, as a fatty food simulant, and distilled water, as an aqueous simulant, were subjected to a pressure of 500MPa for 15 min at 50 °C. The mechanical, thermal, and gas barrier properties of both films were evaluated after the high-pressure processing (HPP) and compared to control samples that have not undergone this treatment. Significant changes in all properties were observed in both films after the HPP treatment and in contact with the food simulants. In both films an induced crystallization was noticed. In the PLASiOx/PLA film the changes were larger when in contact with water that probably acted as a plasticizer. In the PET-AlOx film the changes in properties were attributed to the formation of pinholes and cracks during the HPP treatment. In this film, most of the properties changed more in the presence of oil as the food simulant.  相似文献   

8.
In this study, antioxidant biodegradable films based on pea protein and alpha-tocopherol were successfully developed by solution casting. The effect of both the homogenization conditions (rotor–stator and microfluidizer) and the relative humidity (RH) on the microstructure and physical properties (transparency, tensile, oxygen and water vapour barrier properties) of pea protein/alpha-tocopherol-based films was evaluated. The addition of alpha-tocopherol produced minimal changes in the films’ transparency, while providing them with antioxidant properties and improved water vapour and oxygen barrier properties (up to 30 % in both water vapour and oxygen permeability) when films were at low and intermediate RH. The addition of alpha-tocopherol in microfluidized films gave rise to an increase in their resistance to break and extensibility (up to 27 % in E values) at intermediate and high RH. These results add a new insight into the potential of employing pea protein and alpha-tocopherol in the development of fully biodegradable antioxidant films which are of interest in food packaging.  相似文献   

9.
Antioxidant food packaging films were successfully developed by incorporation of anthocyanin compound (liquid extract from natural sources) into hydroxypropyl methylcellulose matrix. Film color and oxygen barrier properties were measured. Red color of films containing anthocyanin compound (AC) showed good control of light transmission in comparison with control (transparent) films. Barrier properties of these films showed that addition of AC decreased oxygen permeability, possibly due to hydrogen bonding between polymer OH groups and those of anthocyanin compound. The effectiveness of bioactive films was investigated by packaging salmon oil. Changes in oil color, headspace oxygen consumption, conjugated dienes, polyene index, and C–H stretching vibration of cis-double bond (=CH) showed that, in general, AC films improved salmon oil stability. Films with 2, 3, and 4 % (v/v) AC offered the best protection against lipid oxidation due to improved barrier properties against light and oxygen.  相似文献   

10.
鲢鱼皮明胶-海藻酸钠复合膜的制备与性能   总被引:1,自引:0,他引:1  
鲢鱼皮明胶膜因具有安全性高和来源丰富等优点受到广泛关注。然而鲢鱼皮明胶膜的力学性能和阻隔性能 较差,若作为食品包装膜将会受到限制。为了改善鲢鱼皮明胶膜的性能,将海藻酸钠与鲢鱼皮明胶共混制成复合 膜。结果发现,制成的复合膜外观透亮,有阻隔紫外线和油脂的性质;当添加体积分数为20%的海藻酸钠时,复合 膜的水溶性和水蒸气透过率达到最小,抗拉强度达到最大。说明复合膜的阻隔性能和力学性能都优于鲢鱼皮明胶 膜。对膜的傅里叶变换红外光谱图和X射线衍射图进行分析,表明鲢鱼皮明胶和海藻酸钠存在较强的相互作用,这 可能是复合膜性能发生变化的主要原因。  相似文献   

11.
ABSTRACT: The inhibitory activity of chitosan-based edible coatings and films was assessed against the Aspergillus niger food pathogen and deterioration microorganism. Spore-counting assays showed an almost total inhibition of A. niger growth when either film-forming solution or film were used at a low concentration of chitosan (0.1% w/v). Epifluorescence microscopic results showed the action of chitosan on the relative proportion of RNA compared with DNA. The water vapor permeability (WVP) of chitosan film was relatively low compared with the poor moisture barrier of some polysaccharide films. Moreover, a coating with chitosan film on an agar gel, used as a food model, induced a 30% reduction in water loss. These results showed potential applications of chitosan-based films as bioactive packaging with properties to limit the food dehydration phenomenon.  相似文献   

12.
In recent years the use of natural polymers coming from renewable sources has greatly increased due to the over-solid packaging waste and dwindling petroleum reserves. Biopolymer films, which contain both lipid and polysaccharide ingredients to form complex packaging enable us to obtain edible films with good mechanical and water barrier properties as emulsified alginate edible films. Moreover, these can be considered to encapsulate active molecules as flavours. The aim of this work is to better understand the influence of the composition and the structure of the film matrix on its barrier properties and thus on its capacity to protect encapsulated active substances. Granulometry, Differential Scanning Calorimetry (DSC) and Microscopy (MEB) characterizations of films with or without flavour and/or fat showed that the encapsulated n-hexanal compound modifies the film structure because of interactions with the alginate matrix. This interaction affects the studied barrier properties, oxygen permeability, aroma compound permeability, liquid aroma permeability and surface properties, of emulsified alginate films. This study brings new understanding on the role of emulsion-based edible films as a matrix and on its ability to protect encapsulated aroma compounds and on its barrier properties.  相似文献   

13.
A sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite (NaL-CS/PVA/MMT) barrier film with antibacterial activity was developed by coating method and the effectiveness and diffusion behavior were investigated. An intercalated structure was achieved for CS/PVA/MMT film and the interfacial interactions among CS, PVA and MMT were intermolecular hydrogen bonds. An appropriate increase of MMT contents (15 wt% and below) could achieve a remarkable enhancement in tensile strength and Young's modulus, meanwhile, the water vapor, oxygen and carbon dioxide barrier properties of the films were also significantly improved. The NaL-CS/PVA/MMT film exhibited good antibacterial activity against E. coli and well controlled release of NaL. Moreover, the diffusions of NaL from films were dependent on the pH value of aqueous solution and ionic strength, and the initial diffusions (Mt/M < 2/3) could be well described by Fickian equation. The NaL-CS/PVA/MMT film may have potential as a good barrier film with antibacterial activity towards food packaging.  相似文献   

14.
为分析银基金属有机框架(Ag@MOF)用于食品包装的可行性,采用流延法制备四种不同的聚乙烯醇(PVA)基食品包装膜(PVA/Ag@MOF、PVA/H2PYDC、PVA/Ag、PVA),并研究它们的力学性能、热力学性能、水阻隔性、抗菌性、细胞毒性等。结果表明,与PVA、PVA/H2PYDC膜相比,Ag@MOF的加入改善了薄膜的力学性能,使薄膜最大拉伸强度提高到36.21 MPa。与PVA、PVA/H2PYDC、PVA/AgNPs膜相比,Ag@MOF的加入增强了膜的热稳定性。与PVA、PVA/H2PYDC膜相比,AgNPs和Ag@MOF的刚性结构防止了水的扩散,提高了阻水性能。PVA/Ag@MOF膜对金黄色葡萄球菌和大肠杆菌的抗菌活性也很好,其抗菌活性远大于AgNPs和H2PYDC复合膜,且具有较低的细胞毒性。因此,PVA/Ag@MOF薄膜是一种很有前景的食品包装材料,可以减少环境微生物对食品的干扰且细胞毒性较低,能够有效提高食品的安全性和储存周期。  相似文献   

15.
《Food Hydrocolloids》2007,21(5-6):879-888
Synthetic food packaging is classically used to prevent mass transfer of various small molecules (water, gases, flavour compounds or solutes) between a food and its surrounding medium. In the case of composite foods, the development of edible films and coatings, applied between the different phases of this food is rising up. The increase of such food products shelf-life is indeed related to the barrier efficiency of these edible packaging against small molecules transfers. This is especially true for water transfer between compartments of different water activities in the same food, that leads to important physico-chemical changes and therefore to food quality deterioration. Film-forming substances used for this study associated an iota-carrageenan hydrocolloid matrix, that ensures good mechanical properties, in which a high melting point fat was dispersed to enhance moisture barrier properties. After the film drying in standardised conditions of temperature (30 °C) and relative humidity (40%), the emulsified films containing various contents of fat (30%, 60% or 90% dry basis) were also submitted to heat treatment (100, 150, 200 °C) and for different durations (1, 2, 4, 8 min) corresponding to those classically encountered in baking processes. The aim was to tend to a bilayer film structure from a single film manufacturing. Size and repartition of fat globules in the carrageenan matrix was characterised by laser light granulometry and film microstructure was observed by ESEM. Barrier efficiency to water was evaluated from water vapour permeability measurements. Contrary to previous observations on film drying, neither fat globule size nor film water permeability was significantly modified by such heat treatment. Moreover, no phase separation was noticed by microscopic observations of the film cross section. Therefore, carrageenan matrix represents a very powerful material for its structural properties to a system and is a good candidate for application such as encapsulation of active substances incorporated in biopolymer coatings or films for food packaging applications.  相似文献   

16.
Edible films have been applied to food packaging. To examine a new edible film source from underutilized food processing byproducts, rice bran protein (RBP) was isolated from rice bran oil residues and the RBP films were prepared. The suitable plasticizer for the preparation of the RBP film was fructose, and the tensile strength (TS) and elongation at break of the RBP film were 0.94 MPa and 25.54%, respectively. Therefore, to improve the poor mechanical properties of the RBP film, red algae or gelatin was added to the film-forming solution for preparing a composite film. Among the RBP composite films, the 4% RBP/4% gelatin composite film was the most desirable with regard to the physical property of films, having the highest TS of 28.42 MPa. These results suggest that the RBP/gelatin blend film can be applicable in food packaging.  相似文献   

17.
Active antioxidant food packaging films were produced by the incorporation of ascorbic acid, ferulic acid, quercetin, and green tea extract into an ethylene vinyl alcohol copolymer (EVOH) matrix. The characterisation of the thermal and barrier properties of the developed film showed that the addition of these bioactive compounds did not greatly modify their properties. However, the presence of ascorbic and ferulic acids resulted in a significant decrease in water vapour permeability, possibly due to the high affinity for water of these substances. Exposure of the films to various food simulants showed that the release from the films was dependent on the type of food simulant and the antioxidant incorporated: in the aqueous food simulant, materials containing ascorbic acid produced the largest release; in the fatty food simulant, quercetin and green tea extract presented the best performance. The efficiency of the films developed was determined by real packaging applications of brined sardines. The evolution of the peroxide index and the malondialdehyde content showed that, in general, the films improved sardine stability. Films with green tea extract offered the best protection against lipid oxidation.  相似文献   

18.
本文研究了不同浓度(0%、5%、7.5%、10%和12.5%)的葡萄柚精油(GEO)对聚乳酸(PLA)/葡萄柚精油复合膜的热性能,结构性能,机械性能,气体阻隔性能和抗菌性能等方面的影响。GEO通过减少聚合物链段的分子间作用力,从而改善复合膜的柔韧性,对复合膜起到一定的增塑作用。GEO的添加降低了PLA相的结晶性。随着GEO浓度的增加,复合膜的水蒸汽阻隔性能显著降低。但是,复合膜的抗菌活性因GEO的加入得以提高。将聚乳酸/葡萄柚精油复合膜应用于双孢蘑菇保鲜。结果表明,聚乳酸/葡萄柚精油复合膜与纯聚乳酸膜、低密度聚乙烯膜相比较,更能有效地保持蘑菇的硬度,阻止微生物生长,维持较好的总体接受度。因此,聚乳酸/葡萄柚精油复合膜可作为一种有效的包装材料,用于延长双孢蘑菇的货架期。  相似文献   

19.
Biodegradable edible films have the potential to either replace or reduce the amount of synthetic packaging utilized by the food industry. The overall goal of this research was to investigate the effect of flax seed oil concentration (1–10%) on the mechanical, moisture barrier and swelling properties of soy protein isolate (SPI) (5.0% w/w SPI, 40% w/w glycerol) emulsion-based films. Film forming solutions showed a bimodal oil droplet distribution with peak sizes occurring at < 10 and ~ 100 μm. As the oil content increased, the size distribution shifted towards smaller droplet sizes. An equal size ratio was noted at the 5.0% oil content level. All film forming solutions were pseudoplastic in nature, where viscosity increased from 18 to 58 mPa (at 1 s 1) as a function of oil content (3% to 10%). Tensile strength of formed films reached a maximum at 5.35 MPa at the 5% w/w oil level, whereas tensile elongation increased from 11.3% to 22.2% with increasing oil content. Puncture strength and deformation, as well as water vapour permeability was relatively independent of the oil content. Moisture content and swelling properties of formed films were found to both decrease from 22.8% to 18.7%, and from 3114% to 1209%, respectively as the oil content was raised from 1 to 10%, and films became darker, redder and more yellow in colour as the percentage of flax seed oil increased.  相似文献   

20.
This paper presents a multi-scale approach to investigate mass transfer properties of edible films that integrates some published data and new original results. The transport of small molecules, such as water, between the different parts of multiphase food products leads to quality deterioration and thus requires the use of barrier edible films or coatings. Therefore, it is necessary to characterise the properties of both food and edible barriers, like the diffusivities of their respective migrants. Surface properties characterisation of edible films, composed of an iota-carrageenan matrix in association with a high melting point fat was investigated by goniometry and allows the determination of wetting and water absorption, with emphasis on the constituents functionality. Diffusion of a model probe using the FRAP (Fluorescence Recovery After Photobleaching) method is characterised by a critical water content threshold, inducing an increase of the molecular mobility, and better explains the role of glycerol, used as the plasticizer. This study brings information on the diffusion of a small molecule in the film. Further NMR (Nuclear Magnetic Resonance) spectroscopy investigation contributes to a better understanding and identification of the interactions between the polymer and the diffusant. Finally, FTIR-ATR (Fourier Transform InfraRed–Attenuated Total Reflectance) analysis enables to obtain the diffusion coefficient of the liquid water in the film. Such a multi-scale investigation highlights the permeation mechanism within edible barriers.Industrial relevanceSynthetic food packaging is usually used to prevent mass transfers of some molecules, such as moisture, gases, flavor compounds or solutes, between a food and its surrounding medium. In the case of multiphase food products, the development of edible films and coatings, applied between the different phases of this food, has a great potential to increase its shelf life. This article examines the different scale levels of investigation in order to determine the diffusivity of small molecules through these edible packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号