共查询到15条相似文献,搜索用时 62 毫秒
1.
在28℃.3.25A直流电下,对Cu/Sn3.0Ag0.5Cu/Cu对接无铅焊点进行原位电迁移实验,观察了通电120,168,384和504 h后焊点横截面的微观组织形貌.结果表明,电迁移初期,Cu<,6>Sn<,5>化合物遍布整个焊点截面,随时间延长,不断从阴极向阳极迁移聚集;当通电504 h后,焊点内已看不到金属间... 相似文献
2.
通过热风回流焊制备了Cu/Sn3.0Ag0.5Cu/Cu对接互连焊点,测试了未通电及6.5 A直流电下通电36 h和48 h后焊点的剪切强度.结果表明,电迁移显著地降低了焊点的剪切强度,电迁移36 h使剪切抗力降低约30%,电迁移48 h降低约50%.SEM观察断口和界面形貌表明,界面金属间化合物增厚使断裂由韧性向脆性... 相似文献
3.
4.
5.
6.
7.
8.
9.
10.
11.
Electroless Ni-P/Cu under-bump metallization (UBM) is widely used in electronics packaging. The Sn3.0Ag0.5Cu lead-free composite
solder pastes were produced by a mechanical alloying (MA) process doped with Cu6Sn5 nanoparticles. In this study, the detailed interfacial reaction of Sn3.0Ag0.5Cu composite solders with EN(P)/Cu UBM was investigated
after reflow. A field-emission scanning electron microscope (FESEM) was employed to analyze the interfacial morphology and
microstructure evolution. The intermetallic compounds (IMCs) formed at the interface between the Sn3.0Ag0.5Cu composite solders
and EN(P)/Cu UBM after one and three reflows were mainly (Ni1−x,Cux)3Sn4 and (Cu1−y,Niy)6Sn5. However, only (Ni1−x,Cux)3Sn4 IMC was observed after five reflows. The elemental distribution near the interfacial region was evaluated by an electron
probe microanalyzer (EPMA) as well as field-emission electron probe microanalyzer (FE-EPMA). Based on the observation and
characterization by FESEM, a EPMA, and an FE-EPMA, the reaction mechanism of interfacial phase transformation between Sn3.0Ag0.5Cu
composite solders and EN(P)/Cu UBM after various reflow cycles was discussed and proposed. 相似文献
12.
The intermetallic compounds formed in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Ag/Cu pads are investigated.
After reflow, scallop-shaped η-Cu6Sn5 and continuous planar η-(cu0.9Ni0.1)6Sn5 intermetallics appear at the interfaces of the Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder joints, respectively. In the
case of the Sn3Ag0.5Cu specimens, an additional ε-Cu3Sn intermetallic layer is formed at the interface between the η-Cu6Sn5 and Cu pads after aging at 150°C, while the same type of intermetallic formation is inhibited in the Sn3Ag0.5Cu0.06Ni0.01Ge
packages. In addition, the coarsening of Ag3Sn precipitates also abates in the solder matrix of the Sn3Ag0.5Cu0.06Ni0.01Ge packages, which results in a slightly higher
ball shear strength for the specimens. 相似文献
13.
14.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA
packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls
in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder
joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge.
Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of
the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that
in the Sn3Ag0.5Cu0.06Ni0.01Ge packages. 相似文献
15.
Jong-Woong Kim Dae-Gon Kim Won Sik Hong Seung-Boo Jung 《Journal of Electronic Materials》2005,34(12):1550-1557
The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip
package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between
the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints
after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed
to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package
side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses
were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation
of the plastic work and viscoplastic shear strains. 相似文献