首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The comparison of the efficiency of three ozonation systems (ozonation alone and ozonation in the presence of alumina or PFOA) in attempting the removal of aromatic hydrocarbons from water was made. The results obtained indicate that PFOA shows a great catalytic activity, as opposed to alumina. Moreover, ozonation in the presence of PFOA results in a much higher level of ozonation efficiency in comparison to ozonation alone. The effect of ozone dosage, catalyst dosage and pH value was investigated and was found to have a great influence on hydrocarbons removal efficiency. The degradation rate was shown to decrease with increasing ozone and catalyst dosage. The efficiency of the PFOA/O3 system was observed to be at its greatest at the lowest pH examined.  相似文献   

2.
This article presents the results obtained for humic acid (HA) degradation in drinking water by means of an ozonation process in the presence of a nonpolar bonded alumina phase. It was observed that (perflurooctylalumina) (PFOA) is characterized by its high adsorption capacity toward HA. The adsorption properties of bare alumina and alumina modified with perfluorooctanoic acid appeared to differ significantly toward the various organic substances examined. The ozonation process carried out in the presence of PFOA was found to be more efficient for the removal of HA from water than the other two examined ozonation systems: ozonation alone and ozonation in the presence of bare alumina; however, a catalytic activity of bare alumina cannot be denied. The effect of by-products formation and changes in the molecular size distribution of HA were studied in the case of all three examined ozonation systems. The influence of catalyst dosage and ozonation time was also investigated.  相似文献   

3.
Gasoline compounds are one of the most widespread causes of soil and groundwater contamination. Their degradation in model and natural waters due to catalytic ozonation in the presence of perfluorooctylalumina (PFOA) is presented and discussed in this paper. The results obtained clearly indicate that the PFOA/O3 system is effective mainly for ether (MTBE and ETBE) removal from both model and natural water. The catalytic activity of PFOA is not so significant in the case of BTEX ozonation. An investigation into by-product formation has shown that the concentration of both carboxylic acids (mainly oxalic acid) and carbonyl compounds (mainly acetone) increases after catalytic ozonation when compared with ozonation alone. A decrease of formic acid and formaldehyde takes place after the PFOA/O3 system as opposed to the usage of ozonation alone.  相似文献   

4.
This paper is focused on the use of ozone for the elimination of manmade organic micropollutants from drinking waters and waste effluents requiring advanced treatment. A mathematical model was developed to simulate the physical transport and chemical oxidation phenomena prevailing during the process of ozonation. A packed column reactor was constructed in order to test the aptness of the process model. After determining the fluid-dynamic and mass transfer properties of the reactor, stock water solutions spiked with toluene were brought into contact with gaseous O2-O3 mixtures. Toluene removal efficiencies observed under different experimental conditions then were compared with the model predictions.  相似文献   

5.
Pure metal oxides, mixed metal oxides, and platinum metals were evaluated as ozonation catalysts. Batch reactor experiments were performed using deionized water at pH 7 and semi-continuous ozonation experiments were performed using a natural water. p-Chlorobenzoic acid (pCBA), a non-adsorbing model micropollutant that does not react directly with molecular ozone, was included in both solution matrixes. Titanium dioxide, cobalt oxide, nickel oxide, copper oxide, and a mixed metal oxide comprised of copper, zinc, and aluminum did not accelerate the removal pCBA in deionized water. However, cobalt oxide and the mixed metal oxide catalyst were effective at accelerating the removal of pCBA in a natural water matrix. The mixed metal oxide catalyst may have the most potential as an ozonation catalyst because it also was very stable (i.e., low solubility). A ruthenium / alumina catalyst also increased the removal of pCBA, but this metal may follow a different reaction mechanism than the metal oxide catalysts.  相似文献   

6.
Literary and experimental data on the ozonation kinetics of aqueous solutions and wastewater were analyzed. COD was suggested to be used as a kinetic parameter from the solution side. On the basis of the results obtained from the ozonation of model solutions and wastewater, the rate coefficient by COD of the reaction was shown to be constant during separate stages of the process. Due to the consumption of fast-reacting components and entering into the reaction of more slowly reacting intermediate products, the rate coefficient changed spasmodically with transition from one stage to another. The reaction order with respect to the COD of the solution was shown to be equal to the reaction order with respect to the pure component.  相似文献   

7.
This paper presents the results obtained with heterogeneous catalytic ozonation in which model and natural waters are ozonated in the presence of supported titanium dioxide (TiC2) as a solid catalyst. The conditions in preparing the supported catalyst are experimentally optimized. The efficiencies of three catalyst supports (attapulgyte, alumina and silica gel) for organic matter oxidation have been compared. The TiC2 supported in alumina calcined at 500[ddot]C compacted to granular form with a particle diameter about 2-4 mm is demonstrated to be the best catalyst on the removal total organic carbon (TOC) by ozone.  相似文献   

8.
An economical method was proposed to develop an efficient alumina-supported manganese (Mn) and copper (Cu) oxides (Mn-Cu-O/Al2O3) catalyst with a high surface area, 184.06 cm2 g?1. The catalyst was utilized for degradation refinery wastewater by heterogeneous catalytic ozonation. The effects of various operating variables including pH, ozone and catalyst dosages, and temperature were systematically investigated in detail to obtain the optimized conditions for accelerated degradation of refinery wastewater. The optimum values were as follows: ozone dose 50.0 mg L?1, catalyst dose 3.0 g L?1, initial pH = 6.8, T = 17 °C. Refinery wastewater samples were analyzed by chemical oxygen demand (COD) and the results indicated that kinetics of COD followed a pseudo–first-order degradation. Moreover, hydroxyl radical mechanism rather than absorption was proposed, indicating that the surface hydroxyl groups were the active sites that played a significant role in catalytic ozonation.  相似文献   

9.
Controlled, pilot-plant ozone treatment tests were conducted on twenty-nine volatile organic contaminants in distilled water and groundwater. Results show that aromatic compounds and alkenes are well removed by ozone treatment, but that alkanes are poorly removed. Also, efficiency of destruction improved for the alkenes and aromatic compounds with increasing applied ozone dosage and, for some alkanes, with increasing pH. For most compounds, the efficacy of ozone was not severely affected by the background water matrix. Generally, information gathered from the literature regarding rate constants for the ozone treatment of compounds in the gaseous phase or in organic solution predicted, to a useful degree, the effectiveness of ozone in treating aqueous solutions in the present study.

Several of the test conditions selected for this preliminary study may be similar to those found in drinking water treatment plants. Consequently the findings of this research may help guide utilities in their choice of alternative treatments to meet Maximum Contaminant Levels for volatile organic contaminants such as trichloroethylene and benzene.  相似文献   


10.
Hydroxyl radical (HO?) production during ozonation of municipal wastewater was investigated with and without liquid or solid-phase promoters. For liquid-phase promoters, an “ozone dose threshold” was observed, below which addition of H2O2 yielded no discernible increase in the rate of HO? production. This threshold occurs because ozonation of bulk organics in wastewater promotes HO? due to the presence of ambient promoters. Although solid-phase catalysts are reported to promote oxidation of contaminants, ozonation of effluent over TiO2 or GAC was no more effective on trace organic removal than over inert surfaces.  相似文献   

11.
This study focuses on the catalytic ozonation of organic matter recalcitrant to usual water treatment technologies. Experiments aimed to investigate the efficiency of the process TOCCATA®, which uses a granular catalyst coupled with ozonation. Comparison was made between single ozonation, single adsorption onto the catalyst and catalytic ozonation. Adsorption was proven to contribute to decreased dissolved organic carbon. Catalytic ozonation enhanced organic matter removal and ozone transfer compared to single ozonation. Catalytic ozonation was modeled with global apparent first-order kinetics and single adsorption with pseudo–second-order sorption kinetics.  相似文献   

12.
Starting in the early 1970s, the application of ozone for drinking water treatment began to evolve from primarily single-purpose, single-stage use for disinfection, taste and odor control or iron and manganese oxidation, to multipurpose uses of ozone. As a result, most of the newer drinking water treatment plants have installed two- and even three-stages of ozonation. in order to maximize the technological benefits of ozone and to minimize the costs involved.  相似文献   

13.
The study described in this paper was conducted to examine the effects of ozonation and ozone-GAC filtration treatment steps on chlorine consumption of the Seine river water treated in the Choisy-le-Roi drinking water works. Ozone-GAC combined treatment was found to significantly reduce both the initial chlorine demand and the long-term chlorine demand of waters, excepting for waters sampled during cold months of the year. The removal of the chlorine demand potential by ozonation alone was found to be limited for the studied waters and for solutions of macromolecular compounds even in the presence of carbonate species. Ozonation carried out in the absence of bicarbonate ion was found to increase reactive sites with chlorine treatment of an aquatic fulvic extracted from the Seine river water.  相似文献   

14.
Pesticide pollution of surface water and groundwater has been recognized as a major problem in many countries because of their persistence in aquatic environment and potential adverse health effects. Among various water and wastewater treatment options, ozonation and ozone-based advanced oxidation processes, such as ozone/hydrogen peroxide, ozone/ultraviolet irradiation, and ozone/hydrogen peroxide/ultraviolet irradiation, are likely key technologies for degrading and detoxifying these pollutants in water and wastewater. In this paper, ozone-based treatment of four major groups of pesticides, namely carbamates, chlorophenoxy compounds, organochlorines, and organophosphates, are reviewed. Degree of pesticide degradation, reaction kinetics, identity and characteristics of degradation by-products and intermediates, and possible degradation pathways are covered and discussed.  相似文献   

15.
The capital and operating costs for several aromatic compounds (phenanthrene, 2,4-dimethylphenol, 2,4,6-trichlorophenol, nitrobenzene) removal from polluted groundwater using ozonation and advanced oxidation have been estimated on the basis of the laboratory experiments in semibatch conditions. The pollutants initial concentration was in the range of 0.01–1.0 mM. In the calculations the polluted groundwater flow rate was taken 40 m3/h with the initial pH = 7.0. It is shown that polluted groundwater purification from the aromatic pollutants with the initial concentration in the range of 0.01–1.0 mM using ozonation and advanced oxidation is economically feasible.  相似文献   

16.
The surface water of a river has been used as the raw water by the Waterworks Bureau of Osaka City. At present, the manganese contained in the raw water is oxidized by breakpoint chlorination and all oxides are removed by coagulation, sedimentation followed by rapid sand filtration, with chlorine being used as the final disinfectant.

Prechlorination was not conducted in the ongoing pilotplant experiment of an advanced water purification process with ozone and granular activated carbon. It is necessary, therefore, to oxidize manganese by the oxidative effect of ozone instead of prechlorination.

It is important for the treatment of manganese to adjust the ozone dosage because manganese is oxidized up to the soluble septavalent state by the surplus ozone. Since ozone does not continue to exist for very long in water, though its disinfecting power is high, final disinfection by chlorine is required.  相似文献   


17.
The applicability of a sequential process of ozonation and ozone/hydrogen peroxide process for the removal of soluble organic compounds from a pre-coagulated municipal sewage was examined. 6–25% of initial T-CODCr was removed at the early stage of ozonation before the ratio of consumed ozone to removed T-CODCr dramatically increased. Until dissolved ozone was detected, 0.3 mgO3/mgTOC0 (Initial TOC) of ozone was consumed. When an ozone/hydrogen peroxide process was applied, additional CODCr was removed. And we elucidated that two following findings are important for the better performance of ozone/hydrogen peroxide process; those are to remove readily reactive organic compounds with ozone before the application of ozone/hydrogen peroxide process and to avoid the excess addition of hydrogen peroxide. Based on these two findings, we proposed a sequential process of ozonation and multi-stage ozone/hydrogen peroxide process and the appropriate addition of hydrogen peroxide. T-CODCr, TOC and ATU-BOD5 were reduced to less than 7 mg/L, 6 mgC/L and 5 mg/L, respectively after total treatment time of 79 min. Furthermore, we discussed the transformation of organic compounds and the removal of organic compounds. The removal amount of CODCr and UV254 had good linear relationship until the removal amounts of CODCr and UV254 were 30 mg/L and 0.11 cm?1, respectively. Therefore UV254 would be useful for an indicator for CODCr removal at the beginning of the treatment. The accumulation of carboxylic acids (formic acid, acetic acid and oxalic acid) was observed. The ratio of carbon concentration of carboxylic acids to TOC remaining was getting higher and reached around 0.5 finally. Removal of TOC was observed with the accumulation of carboxylic acids. When unknown organic compounds (organic compounds except for carboxylic acids) were oxidized, 70% was apparently removed as carbon dioxide and 30% was accumulated as carboxylic acids. A portion of biodegradable organic compounds to whole organic compounds was enhanced as shown by the increase ratio of BOD/CODCr.  相似文献   

18.
A novel catalyst for the ozonation process was prepared by loading manganese on the granular activated carbon (GAC). Nitrobenzene was used as a model refractory organic micropollutant in this study. The catalytic activity of GAC and the Mn-loaded GAC were studied respectively. The removal efficiency of nitrobenzene by Mn-loaded GAC catalyzed ozonation could reach 34.2–49.9%, with the oxidation efficiency being about 1.5–2.0 times higher than that achieved in GAC catalyzed ozonation and 2.0–3.0 times higher than that achieved by ozonation alone. The effect of pH and the t -butanol on the GAC/ozone process was discussed. The optimum condition for preparing the catalyst was studied.  相似文献   

19.
Experimental studies were carried out on the removal of five species of aromatic nitro hydrocarbons by ozonation. Ultraviolet spectrograms with distinct absorption peaks were plotted for each of them. It has been found that the absorbances of aqueous solutions containing the single compounds mentioned above increase to different extents at the wave lengths ranging from 200 to 230 nanometers with increase of ozone dosages. This is ascribed to the nitrite ions splitting out of the benzene rings and being further oxidized to nitrate ions by ozonation.

It has been indicated that the removal of the five species of aromatic nitro compounds by ozonation can well be expressed mathematically by first order reaction equations. Besides, the reaction constants and half-life periods for various species of the tested nitro compounds were calculated at different temperatures and pH.

An ozonation effect index (OI) was developed in the study to express the degree of degradation of substrates by ozonation, by means of which the five aromatic nitro hydrocarbons were compared with each other and finally ranked in the following order from greatest to smallest degrees of degradation:

p-nitroaniline > nitrobenzene > p-dinitrobenzene > p-nitrotoluene > m-dinitrobenzene

It has also found that the CODm/M ratio increases with ozone doses. This means that some easily degradable intermediates are produced, and increase in concentration with increase of ozone dose in the ozonation process.

The mechanisms of removing the five aromatic nitro hydrocarbons are discussed from the viewpoint of orienting effects of substituent groups on the aromatic rings.  相似文献   


20.
The formation of potentially carcinogenic organic halides has been shown to result from drinking water disinfection with chlorine. xidative treatment of organic halide precursors with ozone prior to chlorination has surfaced as an attractive technique for reducing the formation of these compounds. In addition to reduction of precursor levels, preozonation has been reported to effect other beneficial results in water treatment. This paper presents design methodologies to optimize the implementation of the ozonation process for water treatment applications. Pre-design considerations common to all ozonation design processes are discussed. Subsequently, design procedures for the ozone generation and contacting systems are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号