首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CeO2–Co3O4 binary oxide was prepared by impregnation of the high surface area Co3O4 support (S.A. = 100m2 g−1) with cerium nitrate (20 wt% cerium loading on Co3O4). Pretreatment of CeO2–Co3O4 binary oxide was divided both methods: reduction (under 200 and 400 °C, assigned as CeO2–Co3O4–R200 and CeO2–Co3O4–R400 and calcination (under 350 and 550 °C, assigned as CeO2–Co3O4–C350 and CeO2–Co3O4–C550). The binary oxides were investigated by means of X-ray diffraction (XRD), nitrogen adsorption at −196 °C, infrared (IR), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and temperature programmed reduction (TPR). The results showed that the binary oxides pretreatment under low-temperatures possessed larger surface area. The cobalt phase of binary oxides also was transferred upon the treating temperature, i.e., the CeO2–Co3O4–R200 binary oxide exhibited higher surface area (S.A. = 109m2 g−1) and the main phase was CeO2,Co3O4 and CoO. While, the CeO2–Co3O4–R400 binary oxide exhibited lower surface area (S.A. = 40m2 g−1) and the main phase was CeO2, CoO and Co. Apparently, the optimized pretreatment of CeO2–Co3O4 binary oxide can control both the phases and surface area.  相似文献   

2.
Nanostructured Ce0.9Cu0.1O2−δ solid solution with high surface area was prepared by improved citrate sol–gel method with incorporation of thermal treatment under N2. The sample was characterized by TG–DSC, BET nitrogen adsorption, XRD and H2-TPR. Its catalytic activity for CO oxidation was tested. It was found that the improved method offered catalysts with higher surface area and smaller crystallite size, which led to higher catalytic activity for low temperature CO oxidation. H2-TPR measurement indicated that there were three CuO species in the Ce0.9Cu0.1O2−δ solid solutions: finely dispersed CuO species on the surface of CeO2, partial Cu2+ penetrated into CeO2 lattice and bulk CuO phase. The finely dispersed CuO species was regarded as the active site for the low temperature CO oxidation.  相似文献   

3.
The performances of different promoters (CeO2, ZrO2 and Ce0.5Zr0.5O2 solid solution) modified Pd/SiC catalysts for methane combustion are studied. XRD and XPS results showed that Zr4+ could be incorporated into the CeO2 lattice to form Zr0.5Ce0.5O2 solid solution. The catalytic activities of Pd/CeO2/SiC and Pd/ZrO2/SiC are lower than that of Pd/Zr0.5Ce0.5O2/SiC. The Pd/Zr0.5Ce0.5O2/SiC catalyst can ignite the reaction at 240 °C and obtain a methane conversion of 100% at 340 °C, and keep 100% methane conversion after 10 reaction cycles. These results indicate that active metallic nanoparticles are well stabilized on the SiC surface while the promoters serve as oxygen reservoir and retain good redox properties.  相似文献   

4.
《Ceramics International》2019,45(10):13127-13137
Production of high performance low-energy loss solid oxide fuel cells (SOFCs) is a challenge and is the global demand of the current market. We have focused on to develop SOFCs that can be operated at 600–800 °C with better ionic conductivity when compared to the conventional SOFCs functioning at 1000–800 °C. Bulk cerium oxide (CeO2)-based solid electrolyte lessens ionic conductivity at room temperature, thus nanocrystalline CeO2 has been used to improve the conductivity and to control the temperature. The transition metal-doped CeO2 (Ce(1−X)Cr(X)O2) nanocrystalline is used to increases the deficiency of oxygen molecules which in turn enhances ionic conductivity in electrolyte material for SOFC applications. The structural and morphological characterization have been done using XRD, RAMAN and FESEM, while electrical and magnetic characterization at room temperature was analysed using vibrating sample magnetometer, impedance spectroscopy and cyclic voltammetery shows better ionic conductivity in Cr doped CeO2 in comparison with pure nanocrystalline CeO2.  相似文献   

5.
Nanopowdered solid solution Ce1−xCuxO2−γ samples (0 ≤ x ≤ 0.15) were synthesized by self-propagating room temperature synthesis (SPRT). Raman spectroscopy and XRD at room temperature were used to study the vibration properties of these materials as well as the Cu solubility in ceria lattice. The solubility limit of Cu2+ in CeO2 lattice was found to be lower than published in the literature. Results show that obtained powders with low dopant concentration are solid solutions with a fluorite-type crystal structure. However, with Cu content higher than 7.5 mass%, the phase separation was observed and two oxide phases, CeO2 and CuO, coexist. All powders were nanometric in size with high specific surface area.  相似文献   

6.
The interaction of NO and O2 with 5 mol.% of vanadia deposited on Ce0.10Zr0.90O2 and Ce0.69Zr0.31O2 supports by wet impregnation was studied by means of EPR and IR. The supports were structurally characterized by XRD and Raman spectroscopy. Influence of the phase composition of the support on vanadium speciation as well as on surface architecture of the oxovanadium entities was discussed. The NO forms adsorbed on vanadium-containing systems were compared to those observed on bare CeO2-ZrO2 supports. The main products appearing on the catalysts surface during the consecutive reaction with NO and O2 were identified and their thermal evolution was observed. Changes in vanadium speciation accompanying redox processes related to NO and O2 activation were also observed and discussed.  相似文献   

7.
CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts were prepared via a impregnation method characterized by using FT-Raman, XRD, XPS and H2-TPR technologies. The catalytic activity of the samples for low-temperature CO oxidation was investigated by means of a microreactor-GC system. The influence of the calcination temperature and different supports on the catalytic activity was studied.  相似文献   

8.
The catalytic oxidation of soot particulates has been investigated over CeO2, CeO2–ZrO2 and CeO2–HfO2 nanocomposite oxides. These oxides were synthesized by a modified precipitation method employing dilute aqueous ammonia solution. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and BET surface area methods. The soot oxidation has been evaluated by a thermogravimetric method under ‘tight contact’ conditions. The XRD results revealed formation of cubic CeO2, Ce0.75Zr0.25O2 and Ce0.8Hf0.2O2 phases in case of CeO2, CeO2–ZrO2 and CeO2–HfO2 samples, respectively. TEM studies confirm the nanosized nature of the catalysts. Raman measurements suggest the presence of oxygen vacancies, lattice defects and oxide ion displacement from normal ceria lattice positions. UV-Vis DRS studies show presence of charge transfer transitions Ce3+←O2? and Ce4+←O2? respectively. The catalytic activity studies suggest that the oxidation of soot could be enhanced by incorporation of Zr4+ and Hf4+ into the CeO2 lattice. The CeO2–HfO2 combination catalyst exhibited better activity than the CeO2–ZrO2. The observed high activity has been related to the nanosized nature of the composite oxides and the oxygen vacancy created in the crystal lattice.  相似文献   

9.
Shan Xu 《Fuel》2005,84(5):563-567
Nickel catalysts over the CeO2-ZrO2 solid solution were successfully prepared by the co-precipitation method for partial oxidation of methane. The structures of the catalysts were systematically examined by N2 adsorption/desorption, CO chemisorption, X-ray diffraction (XRD) and H2-TPR techniques. The catalytic performance and carbon deposition were investigated for partial oxidation of methane as well. The results showed that the Ni/CeO2-ZrO2 catalysts had a large BET area and fine Ni dispersion. By the co-precipitation method, Ni and CeO2-ZrO2 solid solution had strong interaction confirmed by the H2-TPR analysis. The Ni/CeO2-ZrO2 catalysts showed high activity and stability and the Ni/Ce0.25Zr0.75O2 exhibited the best activity and coking resistance among these catalysts. The catalytic activities and coking resistant behaviors of catalysts were affected by the surface and structural properties of the catalysts.  相似文献   

10.
Using X-ray absorption near-edge spectroscopy (XANES) at the Ce LIII edge, we have measured the extent of reduction of Rh-loaded and Rh-free, mixed Ce-Zr oxides under hydrogen as a function of temperature. The high surface area, mixed oxides were synthesized by sol-gel techniques and hypercritical drying. Using a simple spectrum subtraction method, the degree of reduction has been measured and compared with previous results for CeO2 and (Ce0.5Zr0.5)O2. Addition of Zr lowers the temperature of reduction and increases the extent of Ce reduction. Rh catalyzes the reduction process at low temperatures but does not substantially affect the extent of reduction achieved at high temperature. A synergism between Rh and Zr is found which leads to very high reducibility in the range of 400–600 K. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Zhihui Zhu  Dehua He   《Fuel》2008,87(10-11):2229-2235
CeO2–TiO2 (Ce:Ti = 0.25–9, molar ratio) catalysts were synthesized by a sol–gel method and the catalytic performances were evaluated in the selective synthesis of isobutene and isobutane from CO hydrogenation under the reaction conditions of 673–748 K, 1–5 MPa and 720–3000 h−1. The physical properties, such as specific surface area, cumulative pore volume, average pore diameter, crystal phase and size, of the catalysts were characterized by N2 adsorption/desorption and XRD. All the CeO2–TiO2 composite oxides showed higher surface areas than pure TiO2 and CeO2. No TiO2 phase was detected on the samples of CeO2–TiO2 in which TiO2 contents were in the range of 10–50 mol%. Crystalline Ce2O3 was detected in CeO2–TiO2 (8:2). The reaction conditions, temperature, pressure and space velocity, had obvious influences on the CO conversion and distribution of the products over CeO2–TiO2 (8:2) catalyst.  相似文献   

12.
Ceria-based materials are prospective electrolytes for low and intermediate temperature solid oxide fuel cells. In the present work, fully dense CeO2 ceramics doped with 10 mol% gadolinium (Gd0.1Ce0.9O1.95, GDC) have been prepared with a Pechini method. Characterization studies were realized with thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), mass spectroscopy (MS), high temperature FT-IR (HT-FTIR) and X-ray diffraction analysis (XRD). A single-phase with a fluorite type structure was found to form at a relatively low calcination temperature of 500 °C. Dense GDC pellets having 98% of the relative density were obtained at sintering temperature of 1400 °C/6 h, which gave significantly higher total ionic conductivity of 3.4×10−2 S cm−1 at 500 °C in air. The present work showed that the Pechini method is a relatively low-temperature preparation technique to synthesize Gd0.1Ce0.9O1.95 powders that provided high sinterability and good ionic conductivity.  相似文献   

13.
Vapour phase selective hydrogenation of acetophenone has been performed over a series of Pt/CeO2–MO x (MO x  = SiO2, Al2O3, TiO2, and ZrO2) catalysts. The controlled hydrogenation was carried out in the 453–533 K temperature range at normal atmospheric pressure. The ceria-based mixed oxides were prepared through a co-precipitation or deposition-precipitation route. Platinum was deposited by a wet impregnation method. The obtained catalysts were calcined at 773 K and characterized by means of X-ray diffraction, Raman spectroscopy, BET surface area, temperature programmed reduction, temperature programmed desorption, thermogravimetry, and scanning electron microscopy. XRD analyses suggest that CeO2–SiO2 and CeO2–Al2O3 primarily consist of CeO2 nanoparticles dispersed over the amorphous silica or alumina surface. In the case of CeO2–TiO2, presence of segregated nanocrystalline CeO2 and TiO2-anatase phase were noted. Formation of cubic Ce0.75Zr0.25O2 solid solution was observed in the case of CeO2–ZrO2. No peaks pertaining to platinum could be detected from XRD profiles. Formation of zirconia rich tetragonal phase (Ce0.4Zr0.6O2) was observed in the case of Pt/CeO2–ZrO2 sample. Raman measurements revealed the fluorite structure of ceria and presence of oxygen vacancies in all samples. TPR results suggest that the presence of Pt facilitates the reduction of ceria. The catalytic performance of Pt-based catalysts was found to depend strongly on the nature of the support oxide employed. Among various catalysts investigated, the Pt/CeO2–SiO2 catalyst exhibited better product yields.  相似文献   

14.
Performance of CeO2-La2O3/ZSM-5 sorbents for sulfur removal was examined at temperature ranging from 500 oC to 700 oC. The sulfur capacity of 5Ce5La/ZSM-5 was much bigger than that of CeO2/ZSM-5. H2 had a negative impact on the sulfidation; however, CO had little influence on sulfur removal. The characterization results showed that CeO2 and La2O3 were well dispersed on ZSM-5 because of the intimate admixing of La2O3 and CeO2, the major sulfidation products were Ce2O2S and La2O2S, the XRD and SEM results revealed that ZSM-5 structure could remain intact during preparation and sulfidation process, the H2-TPR showed that the reducibility of CeO2 can be remarkably enhanced by addition of La.  相似文献   

15.
CuO/Ce0.8Zr0.2O2 catalysts were prepared by citrate method and used for carbon monoxide oxidation. The samples were characterized by XRD, XPS, BET and ICP-AES techniques. The catalytic properties of the catalysts were studied by using a microreactor-GC system. XRD analysis showed Ce0.8Zr0.2O2 was cubic, fluorite structure for all the catalysts. The XPS indicated the valence of Ce atom was +4 and there were reduced copper species presented in the CuO/Ce0.8Zr0.2O2 catalyst. The results showed that the CuO loadings, calcination temperature and calcination time affected the catalytic activity of the catalysts for low-temperature CO oxidation. For comparison, the catalytic activities of CuO/CeO2 catalysts calcined at different temperatures were also studied. The results indicated that CuO/Ce0.8Zr0.2O2 catalyst had better thermal resistance than CuO/CeO2 catalyst and had inferior activity than the CuO/CeO2 catalyst when they were both calcined at 600 °C.  相似文献   

16.
《Fuel》2006,85(14-15):2243-2247
Ce1−xNixO2 oxides with x varying from 0.1 to 0.5 were prepared by precipitation and characterized by XRD, TPR and XPS techniques. Three kinds of Ni phases co-exist in Ce1−xNixO2 catalysts: (1) aggregated NiO on the support CeO2, (2) highly dispersed NiO with a strong interaction with CeO2 and (3) Ni atoms incorporated into the CeO2 lattice that forms the solid solution. For the reforming of methane with CO2 and O2, the Ce1−xNixO2 oxides prepared by precipitation are superior catalysts, which had a high catalytic activity and thermal stability, especially Ce0.8Ni0.2O2. The catalytic activity is affected by the Ni dispersion on the surface of the catalyst. The Ni–CeO2 solid solution formed by the Ni species incorporated into CeO2 promotes the capability of coking resistance.  相似文献   

17.
Fe2O3 or CoO modified CeO2-ZrO2 catalysts lead to four times higher yield of hydrocarbons than ZrO2 with C4 hydrocarbons selectivity of more than 50% and isobutene selectivity of more than 80%. XRD and XPS measurements suggested that the interaction of Fe or Co oxide with CeO2 causes the higher Ce3+ concentration with their higher oxidation state. Their combination with ZrO2 synergistically causes the active and selective formation of isobutene.  相似文献   

18.
Highly exposed surface area CeO2 polyhedral nanostructures were successfully prepared via a two-step hydrothermal route for gas-sensing applications. The surface chemistry and formation of polyhedral nanostructures was attributed to the interaction between polyvinylpyrrolidone and ammonium bicarbonate surfactants with parent ceria. The synthesized polyhedron CeO2 structures were characterized using XRD, XPS, BET, SEM, EDS and TEM, respectively. The polyhedrons exhibited a high specific surface area 98.76?m2/g. For gas-sensing applications, the CeO2 polyhedrons were exposed to different gases at various temperatures, from a low to high concentration range (1–150?ppm). At an optimal temperature 220?°C, superior gas-sensing response towards formaldehyde was observed than other target gases. The enhanced sensor response was attributed to multifaceted polyhedral nanostructures. The polyhedral structure based sensors have great potential in industrial sensing applications.  相似文献   

19.
The paper describes an effective procedure for mixing and conditioning ThO2 and CeO2 powders so they are suited for pressing and sintering into high‐density (Th0.9,Ce0.1)O2 ceramic pellets – this material being a “pilot” for (Th,Pu)O2 fuels. Wet ball milling with an organic dispersant aided the powder dispersing process by reducing the agglomeration of very small oxide particles. Homogeneous elemental distributions were seen within the calcined powder mixture. Heat treatments were applied to the calcined, mixed ThO2/CeO2 mix to study phase and surface area transformations. Solid solution formation commences at around 1300°C and goes to completion at a temperature of 1500°C. We also report the effect of a granulation strategy that can be applied to the production of high quality, mixed ThO2 nuclear fuel ceramics. Sized granules of blended ThO2/CeO2 powder were produced from precompacted disks of this material that were subsequently heat treated. This had a positive effect on die filling and compaction into green pellets, as well as on final sintered (Th,Ce)O2 pellet density. The microstructure of the sintered (Th,Ce)O2 ceramic was characterized using SEM‐based electron back‐scatter diffraction from which a uniform density and grain size were readily apparent. XRD results showed that a single phase Th0.9Ce0.1O2, fuel ceramic had been produced. Its density was ~94% TD.  相似文献   

20.
《Catalysis communications》2007,8(8):1274-1278
Potassium nitrate catalysts supported on different oxides (CeO2, Ce0.5Zr0.5O2 and ZrO2) were prepared for diesel soot combustion. The ageing treatment was performed at 800 °C for 24 h and the catalytic activity was evaluated by a temperature-programmed oxidation technique. The results demonstrated that, compared with CeO2 and ZrO2, Ce0.5Zr0.5O2 presented good redox properties, a high surface area and available potassium-holding capacity at an elevated temperature. For aged K/Ce0.5Zr0.5O2, the combustion temperature of soot particle was 359 °C under tight contact conditions and 455 °C under loose contact conditions. Thus, ceria–zirconia mixed oxides were considered as good candidate supports for diesel soot oxidation catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号