共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
多标记分类器链中标记的预测顺序具有随机性,导致学习性能下降,容易造成错误信息的传递.考虑到标记的顺序性,文中提出基于多标记重要性排序的分类器链算法.该算法将标记间相互作用程度的大小作为衡量标记重要程度的依据,在标记相关性的基础上,按照重要性进行标记排序,并将排序结果作为分类器链算法中分类器的顺序,从而解决多标记预测顺序的问题.实验表明,相比现有方法,文中算法在多个数据集上能更稳定有效地分类多标记. 相似文献
4.
石杰 《计算机工程与应用》2015,51(10):132-136
一个样例的标记信息可能会对附近其他样例的学习提供有用信息,特别是在数据比较匮乏的情况下,利用已标记数据与未标记数据间的相关性,能够在一定程度上避免因数据不足所造成的误差。针对样例之间的相关性研究,提出基于局部标记信息的多标记学习算法,算法首先获取样例的局部标记信息,然后将样例的局部标记信息引入属性空间构造新的样例集合,并根据新的样例集合进行分类。实验结果表明,算法的分类性能得到较大提升,且优于其他常用多标记学习算法。 相似文献
5.
用于多标记学习的K近邻改进算法* 总被引:1,自引:0,他引:1
ML-KNN是应用KNN算法思想解决多标记学习问题的一种算法,但存在时间复杂度高和少数类分类精度低的问题.提出一种加权ML-KNN算法WML-KNN,通过取样和加权的方法,在降低算法时间复杂度的同时提高少数类的分类精度.实验表明,WML-KNN算法性能优于其他常用多标记算法. 相似文献
6.
在多标记学习中,每个样本都由一个实例表示,并与多个类标记相关联。现有的多标记学习算法大多是在全局利用标记相关性,即假设所有的样本共享不同类别标记之间的正相关性。然而,在实际应用中,不同的样本共享不同的标记相关性,标记间不仅存在正相关性,而且存在相互排斥的现象,即负相关性。针对这一问题,提出了基于局部正、负成对标记相关性的k近邻多标记分类算法PNLC。首先,对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后,在训练阶段,PNLC算法通过所有训练样本中各样本的每个k近邻的真实标记构建标记之间的正、负局部成对相关性矩阵;最后,在测试阶段,首先得到每个测试样例的k近邻及其对应的正、负成对标记关系,利用该标记关系计算最大后验概率对测试样例进行预测。实验结果表明,PNLC算法在yeast和image数据集上的分类准确率明显优于其他常用的多标记分类算法。 相似文献
7.
在多标记学习系统中,每个样本同时与多个类别标记相关,却均由一个属性特征向量描述。大部分已有的多标记分类算法采用的共同策略是使用相同的属性特征集合预测所有的类别标记,但它并非最佳选择,原因在于每个标记可能与其自身独有的属性特征相关性最大。针对这一问题,提出了融合标记独有属性特征的k近邻多标记分类算法—IML-kNN。首先对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后基于得到的属性特征使用改进后的ML-kNN算法进行分类。实验结果表明,IML-kNN算法在yeast和image数据集上的性能明显优于ML-kNN算法以及其他3种常用的多标记分类算法。 相似文献
8.
在多标记学习(MLL)问题中,每个示例都与一组标记相关联.为了实现对未见示例的高效预测,挖掘和利用标记之间的关系是至关重要的.大多数已有的研究都将关系简化为标记之间的相关性,而相关性又通常基于标记的共现性.揭示了因果关系对于描述一个标记在学习过程中如何帮助另一个标记更为重要.基于这一观察,提出了两种策略来从标记因果有向... 相似文献
9.
通过近邻样例类标记确定测试样例类标记的思想在多标记分类算法中取得了良好的效果。该类算法通过对训练集进行学习,建立训练样例类标记与其k个近邻样例中不同类标记样例个数的映射关系,然后用该映射关系预测测试样例的类标记。该类算法的不足是只考虑近邻样例中不同类别样例的个数与测试样例类标记的映射关系,忽略了近邻样例与测试样例的局部相关性。考虑训练样例类与近邻样例的局部相关性,建立起它们类别间的映射关系,预测测试样例类标记,提出ML-WKNN算法。实验表明,ML-WKNN能更好地处理多标记分类问题和自动图像标注问题。 相似文献
10.
11.
ECC-MIMLSVM+是多示例多标签学习框架下一种算法,该算法提出了一种基于分类器链的方法,但其没有充分考虑到标签之间的依赖关系,而且当标签数目的增多,子分类器链长度增加,使得误差传播问题凸显. 因此针对此问题,提出了一种改进算法,将ECC-MIMLSVM+算法和标签依赖关系相结合,设计成基于标记依赖关系集成分类器链(ELDCT-MIMLSVM+)来加强标签间信息联系,避免信息丢失,提高分类的准确率. 通过实验将本文算法与其他算法进行了对比,实验结果显示,本文算法取得了良好的效果. 相似文献
12.
在分类器链方法中, 如何确定标签学习次序至关重要, 为此, 提出一种基于关联规则和拓扑序列的分类器链方法(TSECC). 首先结合频繁模式设计了一种基于强关联规则的标签依赖度量策略; 接下来通过标签间依赖关系构建有向无环图, 对图中所有顶点进行拓扑排序; 最后将得到的拓扑序列作为分类器链方法中标签的学习次序, 对每个标签的分类器依次迭代更新. 特别地, 为减少无标签依赖或标签依赖度较低的“孤独”标签对其余标签预测性能的影响, 将“孤独”标签排在拓扑序列之外, 利用二元关联模型训练. 在多种公共多标签数据集上的实验结果表明, TSECC能够有效提升分类性能. 相似文献
13.
在多标记问题中,一个样本对应的多个类别之间经常会存在一定的相关性,这些相关性可以为多标记分类提供有用的信息。已有的多标记学习对于类别之间的相关性研究是建立在原始数据上的,然而原始数据往往是高维且含有噪声的,使得已有学习方法无法达到满意的效果。提出了一种基于共享子空间的多标记学习方法。该方法可以在类别信息的指导下,学到从原始特征空间到高层共享空间的映射函数,从而可以把原始的高维数据映射到一个低维空间中。同时也学到一个从类别空间到高层空间的映射函数,使得数据进行低维的重新表示后,可以直接对应到类别信息。在5个实际的数据集合上进行了测试,实验结果表明该模型可以有效地提高多标记数据的分类性能。 相似文献
14.
多标签学习中一个样本可同时属于多个类别标签,每个标签都可能拥有反映该标签特定特点的特征,即类属属性,目前已经出现了基于类属属性的多标签分类算法LIFT。针对LIFT算法中未考虑标签之间相互关系的问题,提出一种基于标签相关性的类属属性多标签分类算法CLLIFT。该算法使用标签距离度量标签之间的相关性,通过在类属属性空间附加相关标签的方式完成标签相关性的引入,以达到提升分类性能的目的。在四个多标签数据集上的实验结果表明,所提算法与LIFT算法相比在多个多标签评价指标上平均提升21.1%。 相似文献
15.
针对标签信息不完整的多标签分类问题,一种新的多标签算法MCWD被提出.它通过有效地恢复训练数据中缺失的标签信息,能够产生更好的分类结果.在训练阶段,MCWD通过迭代更新每个训练实例的权重以及利用两两标签之间的相关性来恢复训练数据中缺失的标签信息;在标签恢复完毕后,利用新得到的训练集来训练分类模型;用此模型对测试集进行预... 相似文献
16.
在多标记学习框架中,每个对象由一个示例(属性向量)描述,却同时具有多个类别标记.在已有的多标记学习算法中,一种常用的策略是将相同的属性集合应用于所有类别标记的预测中.然而,该策略并不一定是最优选择,原因在于每个标记可能具有其自身独有的特征.基于这个假设,目前已经出现了基于标记的类属属性进行建模的多标记学习算法LIFT.LIFT包含两个步骤:属属性构建与分类模型训练.LIFT首先通过在标记的正类与负类示例上进行聚类分析,构建该标记的类属属性;然后,使用每个标记的类属属性训练对应的二类分类模型.在保留LIFT分类模型训练方法的同时,考察了另外3种多标记类属属性构造机制,从而实现LIFT算法的3种变体——LIFT-MDDM,LIFT-INSDIF以及LIFT-MLF.在12个数据集上进行了两组实验,验证了类属属性对多标记学习系统性能的影响以及LIFT采用的类属属性构造方法的有效性. 相似文献
17.
王占东 《数字社区&智能家居》2014,(5):3090-3092
随着数码产品,移动智能设备以及存储设备的普及,大数据时代已经来临,如何对海量数据进行有效的组织、管理、存储成为科研以及商业领域急需解决的问题,在图像数据挖掘当中,图像标注分类是当前比较热门的方向。采用机器学习的方法来找到大规模数据当中的隐含规律,实现样本的视觉内容到概念的映射需要对视觉数据内容进行恰当的描述,如果我们使用整个的图像作为基本单元,存在的问题就是视觉数据往往具有歧义性,难以准确表述包含的语义,多示例学习方法应运而生。图像分类问题本身是一种多标签问题,传统方法将其转化为一系列的单标签问题解决,忽略了标签之间的相关性,我们将标签相关性引入到模型构建当中,实验取得良好效果。 相似文献
18.
针对现有多标签特征选择方法存在的两个问题:第一,忽略了学习标签相关性过程中噪声信息的影响;第二,忽略探索每个簇的综合标签信息,提出一种增强学习标签相关性的多标签特征选择方法。首先,对样本进行聚类,并将每个簇中心视为一个综合样本语义信息的代表性实例,同时计算其对应的标签向量,而这些标签向量体现了每个簇包含不同标签的重要程度;其次,通过原始样本和每个簇中心的标签级自表示,既捕获了原始标签空间中的标签相关性,又探索了每一个簇内的标签相关性;最后,对自表示系数矩阵进行稀疏处理,以减少噪声的影响,并将原始样本和每个簇代表性实例分别从特征空间映射到重构标签空间进行特征选择。在9个多标签数据集上的实验结果表明,所提的算法与其他方法相比具有更好的性能。 相似文献