首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the consistency of kilovoltage (tube potentials between 40 and 300 kV) x-ray beam dosimetry using the "in-air" method and the in-phantom measurement has been studied. The procedures for the measurement of the central-axis depth-dose curve, which serve as a link between the dose at the reference depth to the dose elsewhere in a phantom, were examined. The uncertainties on the measured dose distributions were analyzed with the emphasis on the surface dose measurement. The Monte Carlo method was used to calculate the perturbation correction factors for a photon diode and a NACP plane-parallel ionization chamber at different depths in a water phantom irradiated by 100-300 kV (2.43 mm Al-3.67 mm Cu half-value layer) x-ray beams. The depth-dose curves measured with these two detectors, after correcting for the perturbation effect (up to 15% corrections), agreed with each other to within 1.5%. Comparisons of the doses at the phantom surface and at 2 cm depth in water for photon beams of 100-300 kV tube potential obtained using the "backscatter" method and those using the "in-phantom" measurement have shown that the "in-air" method can be equally applied to this energy range if the depth-dose curve can be measured accurately. To this end, measured depth ionization curves require depth-dependent correction factors.  相似文献   

2.
The purpose of this study is to develop a mathematical model and calculate photon-absorbed fractions in a homogeneous nonradioactive cylinder placed inside off-center and outside a cylindrical homogeneous distribution of activity. In the second case, both the radioactive cylinder and the nonradioactive one are placed in a tissue-equivalent nonradioactive medium. The values of the photon-absorbed fractions are investigated for various geometrical configurations using water as the material filling the cylinders and the medium in between and an isotope commonly used in Nuclear Medicine, 99mTc. The calculations for off-center cylinders allows for modeling inhomogeneous distributions of activity within a tumor by placing several "cold" cylinders of various sizes in a radioactive finite cylinder. This three-dimensional model calculates photon-absorbed fractions for inhomogeneous activity distributions that can be used in quantitative nuclear medicine for self-absorption correction, thus introducing a more realistic correction than the one-dimensional corrections. These calculations are also used to model the response of a cylindrical TLD (thermoluminiscent dosimeter) placed inside a homogeneous radioactive cylinder and outside the homogeneous radioactive cylinder, in an absorbing nonradioactive surrounding medium. The purpose of these calculations is to evaluate the photon-absorbed fraction in the TLD as an instrument of measuring the time-integrated activity of a homogeneous radioactive source versus an inhomogeneous one. The dependence of the TLD-absorbed fraction on the position of the TLD with respect to the radioactive cylinder is investigated.  相似文献   

3.
Polarity and ion recombination correction factors for the NACP (type-02) design parallel-plate ionization chamber employed in a recent UK national electron beam dosimetry intercomparison are derived over the full range of energies and measurement conditions encountered. In addition, these effects have been studied for a further four NACP chambers, a Markus parallel-plate chamber, a Roos parallel-plate chamber and a NE2571 graphite walled cylindrical ionization chamber.  相似文献   

4.
Cylindrical ionization chambers produce perturbations (gradient and fluence) in the medium, and hence the point of measurement is not accurately defined in electron beam dosimetry. The gradient perturbation is often corrected by a shift method depending on the type of ion chamber. The shift is in the range of 0.33-0.85 times the inner radius (r) of the ion chamber, upstream from the centre of the chamber, depending upon the dosimetry protocol. This variation in shift causes the surface dose to be uncertain due to the high dose gradient. An investigation was conducted to estimate the effective point of measurement of cylindrical ion chambers in electron beams. Ionization measurements were taken with the ion chamber in air and in a phantom at source to chamber distances of <100 cm and >100 cm respectively. The data in air and in the phantom were fitted with the inverse square and electron depth dose functions, respectively. The intersection of the two functions provides an accurate estimate of the ion chamber shift and the surface dose. Our results show that the shift correction for an ion chamber is energy dependent. The measured shifts vary from 0.9r to 0.5r between 6 MeV and 20 MeV beams respectively. The surface dose measured with the ion chambers and mathematically determined values are in agreement to within 3%. The method presented in this report is unambiguous, fast and reliable for the estimation of surface dose and the shift needed in electron beam dosimetry.  相似文献   

5.
As from the 1 January 1997, the recent IPEMB code of practice for electron dosimetry is the recommended protocol for electron beam dosimetry in the UK, replacing the previous HPA code of practice and its IPSM addendum. New recommendations for electron beam dosimetry have also been formulated recently by the AAPM and the IAEA on the use of parallel-plate ionization chambers in high-energy electron beams. Against this background, the procedures recommended in each of these codes of practice have been followed from intercomparison of the field instrument ionization chamber with a secondary standard through to the determination of absorbed dose at the reference position in the electron beam. Absorbed doses have been determined for a number of electron beam energies ranging from nominal 5 MeV through to 17 MeV, and for four different types of field instrument ionization chamber: an NE2571 graphite walled cylindrical chamber; an NACP parallel-plate chamber; a Markus parallel-plate chamber; and a Roos parallel-plate chamber. The differences in the determination of absorbed dose between the IPEMB protocol and the HPA/IPSM protocol vary from +0.5% to +1.6% at the depth of maximum dose. In addition the IPEMB measured doses are 0.2% larger than those measured following the IAEA code of practice. It may also be stated that the IPEMB measured doses at the depth of maximum dose are up to 1.5%, but generally less than 1.0%, lower than those measured by the AAPM protocol.  相似文献   

6.
In electron beam dosimetry using parallel-plate chambers solid phantoms are sometimes necessary. To obtain the dose to water from the ionization obtained in the solid phantom, fluence correction factors and perturbation factors have to be applied. In this study fluence factors in a perturbation free geometry have been determined experimentally for common phantom materials. Wall perturbation factors for simulated Attix, NACP, and Roos chambers have also been determined for the same materials. Comparative Monte Carlo calculations have been performed using the EGS4 Monte Carlo code. Comparison with data in newly published protocols such as IAEA and IPEMB shows an agreement with the results obtained in this paper to within 1%, demonstrating that the data published in these protocols may be used with reasonable accuracy if recommended phantoms are used. The results also show that if unsuitable phantom materials are used, the wall perturbation factors may differ for different chambers and for different phantom materials by more than 3% and perturbation factors have to be considered in order to obtain a high accuracy in the dose determination.  相似文献   

7.
Some clinically relevant measurements of lung tissue/water equivalent interfaces have been performed for a 50 MV therapeutic x-ray beam. The purpose was to investigate the severity of dose perturbation effects in lung tissue and adjacent tissues using an energy well above the common clinical practice in thoracic irradiations. The phantoms were constructed of solid water, PMMA and white polystyrene as soft tissue (water) equivalents, and cork was used as the lung tissue equivalent. Measurements were performed using radiographic film and a cylindrical ionization chamber. The results show that the degradation of the 20/80% beam penumbra in the lung region is severe, up to 2.5 times the penumbra in water for a 10 cm thick lung with a density of 0.30 x 10(3) kg m(-3). The lack of electronic equilibrium in the low-density region can cause underdosage at the lung/tumour interface of up to 30% of maximum target dose, and the build-up depth to 95% of target dose in unit density tissue behind the lung may be as large as 22 mm. It is also shown that these figures strongly depend on patient anatomy and beam size and why a careful calculation of the individual dose distribution is needed for optimal choice of photon beam energy in thoracic treatments.  相似文献   

8.
This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water for medium-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB code of practice for the UK secondary standard (NE2561/NE2611) ionization chamber are derived and their constituent factors examined. The comparison of the chambers' responses in air revealed that of the chambers tested only the NE2561, NE2571 and NE2505 exhibit a flat (within 5%) energy response in air. Under no circumstances should the NACP, Sanders electron chamber, or any chamber that has a wall made of high atomic number material, be used for medium-energy x-ray dosimetry. The measurements in water reveal that a chamber that has a substantial housing, such as the PTW Grenz chamber, should not be used to measure absorbed dose to water in this energy range. The value of k(ch) for an NE2561 chamber was determined by measuring the absorbed dose to water and comparing it with that for an NE2571 chamber, for which k(ch) data have been published. The chamber correction factor varies from 1.023 +/- 0.03 to 1.018 +/- 0.001 for x-ray beams with HVL between 0.15 and 4 mm Cu. The values agree with that for an NE2571 chamber within the experimental uncertainty. The corrections due to the stem, waterproof sleeve and replacement of the phantom material by the chamber for an NE2561 chamber are described.  相似文献   

9.
Measuring portal dose with an electronic portal imaging device (EPID) in external beam radiotherapy can be used to perform routine dosimetric quality control checks on linear accelerators and to verify treatments (in vivo dosimetry). An accurate method to measure portal dose images (PDIs) with a commercially available fluoroscopic EPID has been developed. The method accounts for (i) the optical 'cross talk' within the EPID structure, (ii) the spatially nonuniform EPID response and (iii) the nonlinearity of the EPID response. The method is based on a deconvolution algorithm. Measurement of the required input data is straightforward. The observed nonlinearity of the EPID response was largely due to the somewhat outdated EPID electronics. Nonlinearity corrections for more modern systems are expected to be smaller. The accuracy of the method was assessed by comparing PDIs measured with the EPID with PDIs measured with a scanning ionization chamber in a miniphantom, located at the same position as the fluorescent screen. For irradiations in open, wedged and intensity modulated 25 MV photon beams (produced with dynamic multileaf collimation) EPID and ionization chamber measurements agreed to within 1% (1 SD).  相似文献   

10.
The procedure recommended by radiation dosimetry protocols for determining the collection efficiency f of an ionization chamber assumes the predominance of general recombination and ignores other charge loss mechanisms such as initial recombination and ionic diffusion. For continuous radiation beams, general recombination theory predicts that f can be determined from a linear relationship between 1/Q and 1/V2 in the near saturation region (f > 0.7), where Q is the measured charge and V the applied chamber potential. Measurements with Farmer-type cylindrical ionization chambers exposed to cobalt-60 gamma rays reveal that the assumed linear relationship between 1/Q and 1/V2 breaks down in the extreme near-saturation region (f > 0.99) where Q increases with V at a rate exceeding the predictions of general recombination theory. A comprehensive model is developed to describe the saturation characteristics of ionization chambers. The model accounts for dosimetric charge loss (initial recombination, ionic diffusion, and general recombination) and nondosimetric charge multiplication in an ionization chamber, and suggests that charge multiplication plays a significant role under typical chamber operating conditions (300 V) used in radiation dosimetry. Through exclusion of charge multiplication from the measured chamber signal Q, the model predicts the breakdown of the 1/Q vs 1/V2 relationship and shows that the final approach to saturation is governed by initial recombination and ionic diffusion which are characterized by a linear relationship between 1/Q and 1/V. Collection efficiencies calculated with this model differ by up to 0.4% from those determined through a rigorous application of general recombination theory alone.  相似文献   

11.
The performance of a diode array (Profiler) was evaluated by comparing its enhanced dynamic wedge (EDW) profiles measured at various depths with point measurements using a 0.03 cm3 ionization chamber on a commercial linear accelerator. The Profiler, which covers a 22.5 cm width, was used to measure larger field widths by concatenating three data sets into a larger field. An innovative wide-field calibration technique developed by the manufacturer of the device was used to calibrate the individual diode sensitivity, which can vary by more than 10%. Profiles of EDW measured with this device at several depths were used to construct isodose curves using the percentage depth dose curve measured by the ionization chamber. These isodose curves were used to check those generated by a commercial treatment planning system. The profiles measured with the diode array for both 8 and 18 MV photon beams agreed with those of the ionization chamber within a standard deviation of 0.4% in the field (defined as 80% of the field width) and within a maximum shift of less than 2 mm in the penumbra region. The percentage depth dose generally agreed to within 2% except in the buildup region. The Profiler was extremely useful as a quality assurance tool for EDW and as a dosimetry measurement device with tremendous savings in data acquisition time.  相似文献   

12.
PURPOSE: To determine the characteristics of a commercial electronic portal imaging device (EPID), based on a two-dimensional matrix of liquid-filled ionization chambers, for transmission dose measurements during patient treatment. METHODS AND MATERIALS: Electronic portal imaging device measurements were performed in a cobalt-60 beam and two accelerator x-ray beams, and compared with measurements performed with a Farmer-type ionization chamber in air in a miniphantom and in an extended water phantom. RESULTS: The warming up time of the EPID is about 1 h. The long-term stability of the detector is better than 1% under reference conditions for a period of about 3 months. The signal of the ionization chambers follows approximately the square root of the dose rate, although the relation becomes more linear for larger (> 1 Gy/min) dose rates. The signal can be transformed to dose rate with an accuracy of 0.6% (1 SD). The short-term influence of integrated dose on the sensitivity of the ionization chambers is small. The sensitivity increases about 0.5% for all ionization chambers after an absorbed dose of 8 Gy and returns to its original value in less than 5 min after stopping the irradiation. This small increase in sensitivity can be ascribed to the electrode distance of the ionization chambers in commercial EPIDs, which is 0.8 +/- 0.1 mm. The sensitivity increase depends on the electrode distance and is 4% for a 1.4 mm electrode distance. The scattering properties of the EPID ionization chambers were between those of an ionization chamber in a miniphantom and in a water phantom. CONCLUSION: The matrix ionization chamber EPID has characteristics that make it very suitable for dose rate measurements. It is therefore a very promising device for in vivo dosimetry purposes.  相似文献   

13.
Clinical dose calculations are often performed by scaling distances from a dose distribution measured in one medium to calculate the dose in another. These perturbation calculations have the mathematical form of a mapping. In this paper we identify five conditions required for particle transport to reduce to this form and develop a new mapping for electrons which approximately satisfies these conditions. This continuous scattering mapping is based on two parameters, the scattering power of the medium which determines the shape of the scaling paths, and the stopping power of the medium which determines where the energy is deposited along these paths. Pencil beam dose distributions are calculated with EGS4 in one medium and mapped to other media. The resultant distributions are compared with EGS4 calculations done directly in the second medium. The accuracy of the mapping algorithm is shown to be superior to both linear density scaling and the MDAH electron pencil beam algorithm [Kenneth R. Hogstrom, Michael D. Mills, and Peter R. Almond, "Electron beam dose calculations," Phys. Med. Biol. 26, 445-459 (1981)] for pencil beams in homogeneous media and inhomogeneous phantoms (both slab and nonslab geometries) for a variety of materials of clinical interest.  相似文献   

14.
This paper presents two methods for absorbed dose determination with ionization chambers at short distance from 60Co and 192Ir brachytherapy sources. The methods are modifications of the Bragg-Gray and large cavity principles given in the IAEA code of practice for high- and medium-energy photon beams. A non-uniformity correction factor to account for the non-uniform electron fluence in the air cavity is introduced into the methods. The absorbed dose rates were determined from ionization chamber measurements at distances between 1.5 and 5.0 cm from the brachytherapy sources. The agreement between the two methods is excellent in 60Co brachytherapy dosimetry. For 192Ir dosimetry, the difference is less than 2.5% at all distances. In absorbed dose rate calculations with the 60Co brachytherapy source, the ratios between calculated and experimentally determined absorbed dose rates are 0.987 and 0.994 depending on the method used for absorption and scatter correction. In 192Ir dosimetry, the large cavity principle gives almost identical values to those which can be obtained with the AAPM recommendations. Using the chambers according to the Bragg-Gray principle in 192Ir dosimetry, the agreement with AAPM calculated absorbed dose rates is within 2.5% at all distances. The uncertainty, expressed as one standard deviation, in the experimentally determined absorbed dose is estimated to be between 3 and 4%.  相似文献   

15.
A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of the instrument is to make a fast and accurate two-dimensional image of the dose distribution at the screen position in the phantom. The linearity of the signal with the dose, the noise in the signal, the influence of the ionization density on the signal, and the influence of the field size on the signal have been investigated. The spatial resolution is 1.3 mm (1 s.d.), which is sufficiently smaller than typical penumbras in dose distributions. The measured yield depends linearly on the dose and agrees within 5% with the calculations. In the images a signal to noise ration (signal/1 s.d.) of 10(2) has been found, which is in the same order of magnitude as expected from the calculations. At locations in the dose distribution possessing a strong contribution of high ionization densities (i.e., in the Bragg peak), we found some quenching of the light output, which can be described well by existing models if the beam characteristics are known. For clinically used beam characteristics such as a Spread Out Bragg peak, there is at most 8% deviation from the NACP ionization chamber measurements. The conclusion is that this instrument is a useful tool for quick and reliable quality control of proton beams. The long integration-time capabilities of the system make it worthwhile to investigate its applicability in scanning proton beams and other dynamic treatment modalities.  相似文献   

16.
In kilovoltage X-ray treatment, beam shaping and shielding normal tissue are accomplished by thin sheets of lead cutout, the thickness of which is selected based upon either published data or measurements. Available broad beam attenuation (BBA) data are found to be unsatisfactory and are the subject of this investigation. BBA is defined as the ratio of intensity with (I) and without (I0) attenuating medium for a large field in a phantom. BBA = I(x,t,E)/I0(x,0,E), where x is the depth of measurement, t is the thickness of attenuator, and E is the beam energy. The depth x should be zero for kilovoltage beams and dmax for megavoltage beams. Unfortunately, x is limited by the window thickness which is the core of this study. A Farmer-type cylindrical ion chamber and three parallel plate ion chambers (Capintec, PS-033; Markus; and Holt) were used to measure BBA for kilovoltage beams from a Siemens Stabilipan unit. Results indicate that attenuation is strongly dependent on the window thickness. For the 240 kVp beam, the thickness of lead for 5% and 1% transmissions are 3.1 mm, and 5.2 mm, respectively, with the Capintec chamber. The corresponding values of lead thickness for the Markus chamber are 2.3 mm and 4.0 mm; for the Holt chamber the values are 1.1 mm and 2.2 mm; and for the cylindrical chambers the values are 1.1 mm and 2.3 mm, respectively. Similar variabilities in lead thickness with ion chambers were also noted for the other kilovoltage beams. The large differences in lead thicknesses produce enormous clinical errors, especially for shielding eye and other critical structures. For small thickness of lead (< 0.1 mm), a 20-fold increase in surface dose could be observed instead of usual beam attenuation. This is due to intense low energy photoelectrons liberated from lead sheets in the contact with tissue. It is concluded that the lead thickness required to shield normal tissue varies with ion chamber. Until national or international guidelines for broad beam transmission measurements are established, the shielding materials in contact with skin should be coated with a thin (> or = 0.3 mm) low atomic number medium. In such a situation, transmission measurements will be independent of the choice of an ion chamber.  相似文献   

17.
PURPOSE: To determine the dose perturbation effects at the tissue-metal implant interfaces in head and neck cancer patients treated with 6 MV and 10 MV photon beams. METHODS AND MATERIALS: Phantom measurements were performed to investigate the magnitude of dose perturbation to the tissue adjacent to the titanium alloy implants with (100 mu and 500 mu thick) and without hydroxylapatite (HA) coating. Radiographic and radiochromic films were placed at the upper (and lower) surface of circular metal discs (diameter x thickness: 15 x 3.2, 48 x 3.2, 48 x 3.8 mm2) in a solid water phantom and were exposed perpendicular to radiation beams. The dosimeters were scanned with automatic film scanners. Using a thin-window parallel-plate ion chamber, dose perturbation were measured for a 48 x 3.2 mm2 disc. RESULTS: At the upper surface of the tissue-dental implant interface, the radiographic data indicate that for 15 x 3.2 mm2 uncoated, as well as 100 mu coated discs, dose perturbation is about +22.5% and +20.0% using 6 MV and 10 MV photon beams, respectively. For 48 x 3.2 mm2 discs, these values basically remain the same. However, for 48 x 3.8 mm2 discs, these values increase slightly to about +23.0% and +20.5% for 6 MV and 10 MV beams, respectively. For 48 x 3.2 mm2 discs with 500 mu coating, dose enhancement is slightly lower than that obtained for uncoated and 100 mu coated discs for each beam energy studied. At the lower interface for 15 x 3.2 mm2 and 48 x 3.2 mm2 uncoated and 100 mu coated discs, dose reduction is similar and is about -13.5% and -9.5% for 6 MV and 10 MV beams, respectively. For 48 x 3.8 mm2 discs, dose reduction is about -14.5% and -10.0% for 6 MV and 10 MV beams, respectively. For 48 x 3.2 mm2 discs with 500 mu coating, the dose reduction were slightly higher than those for uncoated and 100 mu coated discs. CONCLUSIONS: For the beam energies studied, dose enhancement is slightly larger for the lower energy beam. The results of dose perturbation were similar for 100 mu coated and uncoated discs. These results were slightly lower for the 500 mu coated discs but are not clinically significant. The dosimetry results obtained from radiochromic films were similar to the ones obtained from radiographic film. The dose enhancement results obtained from ion chamber dosimetry are higher than those obtained from film dosimetry. The ion chamber data represent the data at "true" tissue-titanium interface, whereas the ones obtained from film dosimetry represent the data at film-titanium interface.  相似文献   

18.
This paper investigates the effect of the waterproofing sleeve on the calibration of kilovoltage photon beams (50-300 kV). The sleeve effect correction factor, ps has been calculated using the Monte Carlo method as the ratios of the air kerma in an air cavity of a cylindrical chamber without the waterproofing sleeve to that with a sleeve. Three sleeve materials have been studied, PMMA, nylon and polystyrene. The calculations were carried out using the EGS4 (Electron Gamma Shower version 4) code system with the application of a correlated-sampling variance-reduction technique. The results show that the sleeve correction factor for 1-mm thick nylon and polystyrene sleeves, ps varies from 0.992 to 1.000 and from 0.981 to 1.000, respectively, for the same beam quality range. The ps factor varies with sleeve thickness, beam quality and phantom depth. No significant dependence of the ps factor on field size and source-surface distance has been found. Measurements for PMMA, nylon and polystyrene sleeves of various thicknesses have also been carried out and show excellent agreement with Monte Carlo calculations.  相似文献   

19.
High cell density cultivation of Escherichia coli on a glycerol-based mineral medium was studied. The cultivation was done in a dialysis reactor composed of two chambers. The inner chamber is formed and separated from an outer chamber by a membrane. Fresh medium was continuously exchanged with medium in the outer chamber so that both glycerol and other components of the medium were supplied to the inner chamber through the membrane. Inhibitory substances diffused from the inner to the outer chamber and were subsequently removed with effluent from the outer chamber. Initially, mathematical models were used to describe the process. The optimal cultivation parameters, such as the initial glycerol concentrations in the two chambers, the desired transport rate across the membrane, glycerol concentration in the feed/dialysing medium, and the time to start the medium exchange, were determined from preliminary experiments and calculations. The actual cultivation results agreed very well with the model predictions. A very high cell concentration of 174 g dry weight/l was obtained. This cell concentration is within the range of the maximum theoretical concentration of E. coli in culture broth (160-200 g/l).  相似文献   

20.
The interface effects arising in the measurement of absorbed dose by ionization chambers, owing to the inhomogeneity between the walls and the gas, have been evaluated by an analytical model. The geometrical situation considered here is appropriate for representing the behaviour of a plane-parallel ionization chamber exposed to a radiotherapeutic beam of protons. Two gases, dry air and tissue equivalent gas (methane based), as well as six materials commonly used in ionization chamber walls, i.e. graphite, A-150 tissue equivalent plastic, C-522 air equivalent plastic, nylon type 6, polymethyl methacrylate and polystyrene, have been examined. The analysis of the results shows that, within the limits of the detector dimensions and proton energies commonly used in the dosimetry of radiotherapeutic beams, these effects, if not taken into account in the measurement interpretation, can entail deviations of up to about 2% with respect to the correct absorbed dose in gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号