共查询到20条相似文献,搜索用时 15 毫秒
1.
Neoclassical and institutional economics have developed different theories and methodologies for evaluating environmental and social impacts of electricity generation. The neoclassical approach valuates external costs, and the institutional approach uses social cost valuation and MCDM methods. This paper focuses on three dimensions: theoretical and methodological backgrounds; critical review of specific studies: methodologies, results, and limitations; and discussing their results and implications for environmental policy and further research. The two approaches lead to a common conclusion that fossil fuels and nuclear power show the highest environmental impact. Despite the common conclusion, the conclusion has limited implications for environmental policy because of the weakness of their methodologies. 相似文献
2.
《Energy Policy》2013
A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. 相似文献
3.
Tareq Abu Hamed Hannah FlammMohammad Azraq 《Renewable & Sustainable Energy Reviews》2012,16(1):1082-1088
The Palestinian Territories relies on Israel for 100% of its fossil fuel imports and for 87% of its electricity imports. Total energy consumption in the Palestinian Territories is the lowest in the region and costs more than anywhere else in the Middle East. The purpose of this paper is to present the current energy situation in the Palestinian Territories, evaluate the potential of renewable energies in meeting part of the energy demand and discuss the challenges and benefits of using these types of energies. It is shown that the main renewable energy sources in the Palestinian Territories are solar, wind and biomass. Using the available renewable energy sources in the Palestinian Territories may significantly decrease the energy reliance on neighboring countries and improve the Palestinian population's access to energy. It is estimated that solar sources have the potential to account for 13% of electricity demand and wind energy for 6.6%. The conversion of animal waste into biogas has the potential to meet the needs of 20% of the rural population. The conversion of unused agricultural residue into biodiesel could replace 5% of the imported diesel. 相似文献
4.
Hussein A. Kazem 《Renewable & Sustainable Energy Reviews》2011,15(8):3465-3469
This paper attempts to review and discuss the status and future prospects of renewable energy in Oman. Renewable energy sources like solar, wind, hydro, geothermal, and biomass have been revised. The electricity shortages and the challenges to overcome the increase in electrical demands for the near future have been discussed. The investigations found that solar, shore-wind and geothermal could play an important role in the future of renewable energy in country. Also, it is found that there is need to investigate the potential of offshore-wind, biomass, and hydro (tide, wave and ocean thermal energy). The appearance and weight of renewable energy in the higher education programs and the Oman commitment toward renewable energy have been discussed. The paper finishes with some conclusions and recommendations. 相似文献
5.
Arnulf Jäger-Waldau Márta Szabó Nicolae Scarlat Fabio Monforti-Ferrario 《Renewable & Sustainable Energy Reviews》2011,15(8):3703-3716
Renewable energy use is growing at a much faster pace than the rest of the economy in Europe and world-wide. This and the dramatic oil price increases in 2005 have lead to a remarkable re-evaluation of the renewable energy sector by politics and financing institutions. Despite the fact that there are still discrepancies between the European Union and the USA how to deal with climate change, renewable energies will play an important role for the implementation of the Kyoto Protocol and the world wide introduction of tradable green certificates. Apart from the electricity sector, renewable energy sources for the generation of heat and the use of environmental friendly bio-fuels for the transport sector will become more and more important in the future. 相似文献
6.
Long-term information on switchgrass (Panicum virgatum L.) as a biomass energy crop grown on marginally saline soil and the associated impacts on soil carbon (C) and nitrogen (N) dynamics, greenhouse gas (GHG) emissions, and best management practices (BMPs) are limited. In this study, we employed the DAYCENT model, based on a 4-year switchgrass field experiment, to evaluate the long-term biomass yield potential and environmental impacts, and further to develop BMPs for switchgrass in a semi-arid region.The model showed that long-term (14-year) annual mean biomass yields were 9.6 and 5.2 Mg ha−1 for irrigated and rainfed switchgrass systems, respectively. The simulated biomass yields correlated well with field-measured biomass with r2 values of 0.99 and 0.89 for irrigated and rainfed systems, respectively. Soil organic carbon (SOC) and soil total nitrogen (STN) accumulated rapidly after switchgrass establishment, with mean accrual rates of 0.99–1.13 Mg C ha−1 yr−1 and 0.04–0.08 Mg N ha−1 yr−1, respectively. Based on the outputs of numerous long-term model simulations with variable irrigation water supplies and N rates, the irrigation regime and N rate with the highest yield to input ratio were chosen as BMPs. The DAYCENT model predicted-BMP was irrigating every 14 days at 70% potential evapotranspiration combined with an N rate of 67 kg ha−1 yr−1. Switchgrass established and produced biomass reasonably well in this semi-arid region; however, appropriate irrigation and N fertilization were needed for optimal biomass yield. Switchgrass had a great potential to sequester C into soils with low N2O emissions while supplying significant quantities of biomass for biofuel synthesis. 相似文献
7.
Promoting renewable energy in India has assumed great importance in recent years in view of high growth rate of energy consumption, high share of coal in domestic energy demand, heavy dependence on imports for meeting demands for petroleum fuels and volatility of world oil market. A number of renewable energy technologies (RETs) are now well established in the country. The technology that has achieved the most dramatic growth rate and success is wind energy; India ranks fourth in the world in terms of total installed capacity. India hosts the world's largest small gasifier programme and second largest biogas programme. After many years of slow growth, demand for solar water heaters appears to be gaining momentum. Small hydro has been growing in India at a slow but steady pace. Installation of some of the technologies appears to have slowed down in recent years; these include improved cooking stoves (ICSs) and solar photovoltaic (PV) systems. In spite of many successes, the overall growth of renewable energy in India has remained rather slow. A number of factors are likely to boost the future prospects of renewable energy in the country; these include global pressure and voluntary targets for greenhouse gas emission reduction, a possible future oil crisis, intensification of rural electrification program, and import of hydropower from neighbouring countries. 相似文献
8.
F. van der Hilst J.P. LesschenJ.M.C. van Dam M. RiksenP.A. Verweij J.P.M. SandersA.P.C. Faaij 《Renewable & Sustainable Energy Reviews》2012,16(4):2053-2069
In this study, the spatial variation of potential environmental impacts of bioenergy crops is quantitatively assessed. The cultivation of sugar beet and Miscanthus for bioethanol production in the North of the Netherlands is used as a case study. The environmental impacts included are greenhouse gas (GHG) emissions (during lifecycle and related to direct land use change), soil quality, water quantity and quality, and biodiversity. Suitable methods are selected and adapted based on an extensive literature review. The spatial variation in environmental impacts related to the spatial heterogeneity of the physical context is assessed using Geographical Information System (GIS). The case study shows that there are large spatial variations in environmental impacts of the introduction of bioenergy crops. Land use change (LUC) to sugar beet generally causes more negative environmental impacts than LUC to Miscanthus. LUC to Miscanthus could have positive environmental impacts in some areas. The most negative environmental impacts of a shift towards sugar beet and Miscanthus occur in the western wet pasture areas. The spatially combined results of the environmental impacts illustrate that there are several trade offs between environmental impacts: there are no areas were no negative environmental impacts occur. The assessment demonstrates a framework to identify areas with potential negative environmental impacts of bioenergy crop production and areas where bioenergy crop production have little negative or even positive environmental impacts. 相似文献
9.
Nuclear energy has direct impacts on the environment. Uranium mining, milling, and enrichment affect the livelihoods around and stress on the water resources. In addition, nuclear power plants consume huge amount of water and elevate the water temperature of the ambient water resources. The Iranian nuclear program has pledged for 20,000 MW of nuclear energy by 2025. The fulfillment of such ambitious target stresses the environment and increases the environmental degradation cost of the country. Iran central semi-arid area and the Persian Gulf are the major regions with high risk of impacts from the current nuclear program. 相似文献
10.
Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NOX control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NOX emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NOX technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NOX was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET2000) was smaller than that of flue gas emitted into atmosphere directly (164121 PET2000) and SNCR technology (105225 PET2000). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NOX emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NOX control for coal-fired power plants as well as industrial boilers. 相似文献
11.
A model to explain and predict market-driven investment in renewable energy capital is proposed. The model is suitable for application to the biomass, wind, solar and ocean-derived energy industries. It basically assumes that, given a set of prices and a specific technology, the marginal efficiency of capital invested in these industries only depends on the productivity of the project's site and on its energy transport distance. As suggested by traditional investment theory, the model supposes that only those projects offering marginal efficiencies of capital above the current available rate of interest would be implemented, thus demarcating a region in the productivity–energy transport distance space where all the economically viable projects should lie. By relating this region to the geographic space available for development, total potential investment can be deduced. By using cash flows defined in variable energy transport distance and mean wind speed, a case study for the Chilean wind energy industry is presented. The use of the model to analyse the effect of alternative support schemes for wind energy in Chile is briefly demonstrated. It is concluded that for increasing the area economically available for the development of new wind farms, a research and development support scheme aimed at reducing investment cost of wind turbines by 25% is equivalent to a 20% price subsidy on energy. 相似文献
12.
This work compares the different methods of transport used to import pellets, through a case study of pellets imported into Italy. The objective was to evaluate the economic and environmental sustainability of the different transport methods, the former via a cost analysis, and the latter via an LCA analysis. In particular, the method of transport by sea from Virginia (USA) was compared to overland transport from some European locations. Industrial pellet markets strictly depend on the import of wood pellets from outside the EU-27. The analysis of transport phase is therefore crucial, for inspecting the consequences of transporting such a commodity along considerable distances and allowing decision makers to make strategic decisions about trade planning, optimize international routes, and choose the most sustainable transport methods. The economic analysis showed that road transport cost ranged from 18 to 112 € t−1, while sea cost from 68 to 82 € t−1. Concerning the environmental evaluation, the impact categories most involved were Fossil Fuels, Respiratory Inorganics and Land Use, showing that the critical points in the transport phase are the oil consumption per km and the production of high quantities of SO2 and NOx. Basically, transport by sea appeared to be better, from the economic viewpoint, and for what concerns one of the major environmental impacts involved (fossil fuels) and primary energy consumption, compared to road transport from some of the European locations normally supplying the Italian market. On the contrary, road transport was preferred if transporting pellets from locations nearest to Italy. 相似文献
13.
This paper uses the Jobs and Economic Development Impacts (JEDI) model to estimate economic impacts from 1398 MW of wind power development in four counties in west Texas. Project-specific impacts are estimated at the local level (i.e., within a 100-mile radius around the wind farms) and at the state level. The primary economic policy question addressed is how investment in wind energy affects the state and local communities where the wind farms are built. During the four-year construction phase approximately 4100 FTE (full time equivalents) jobs were supported with turbine and supply chain impacts accounting for 58% of all jobs generated. Total lifetime economic activity to the state from the projects equated to more than $1.8 billion, or $1.3 million per MW of installed capacity. The total economic activity to the local communities was also substantial, equating to nearly $730 million over the assumed 20-year life cycle of the farms, or $0.52 million per MW of installed capacity. Given the current level of impacts observed, and the potential for increased impacts via greater utilization of instate manufacturing capacity and the development of trained wind industry specific laborers, Texas appears to be well positioned to see increasing impacts from continued wind development. 相似文献
14.
A methodology for the environmental impact evaluation over the life span of a Domestic Solar Hot Water System (DSHWS) is presented. The results are compared to the environmental consequences of the conventional energy form substituted and the total environmental gain is calculated. For the purposes of this analysis, the “Eco-indicator ’99” Life Cycle Impact Assessment methodology was adopted and the materials and procedures of the DSHWS production and utilization are evaluated. 相似文献
15.
Over the last fifteen years the small island nations in the South Pacific have seen the introduction of various forms of renewable energy technologies. In spite of high expectations from the development of indigenous renewable energy resources using nonconventional approaches (wind power, wave power, ocean thermal energy conversion, biogas digestors, biomass gasifiers), these technologies have largely failed to develop into viable alternatives to conventional approaches (based on imported petroleum, biomass and hydroelectric power). Among the few exceptions are solar photovoltaic power for remote islands, especially when provided through a utility type institution, solar water heaters, and the use of biomass wastes by agroindustries. As a result, all the island countries are still heavily dependent on fossil fuels for their energy requirements. Some of them to such an extent that their petroleum imports are up to 500% of their total exports.As far as acceptance of new renewable energy technologies by the Pacific communities goes hasty decisions and introductions have done more harm than good. 相似文献
16.
Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. 相似文献
17.
《Energy Policy》2016
Renewable energy sources (RES) play a key role in the European Commission's 2030 Climate and Energy Framework, which aims for a low-carbon economy that increases the security of the EU's energy supplies and creates new opportunities for growth and jobs, among other benefits. We assess whether renewable energy deployment in Europe can provide this “triple dividend”, at which ambition levels of 2030 RES targets and what the role of the support policy scheme for electricity is. We apply two types of models: a detailed techno-economic sector model of the deployment of RES and two macroeconomic models. Our findings suggest that up to 2030 our triple-dividend hypothesis holds even under a declining role of Europe as technology provider for the rest of the world. Additional emission reductions of up to 1040 Mt CO2, as compared to a baseline scenario in 2030, are possible. Demand for fossil fuels can likewise be reduced due to the deployment of renewable energy sources by up to 150 Mtoe. More ambiguous is the order of magnitude of the effects on GDP and employment, which differs noticeably depending on the economic theory applied in the different models. Nevertheless, both models predict slightly higher GDP and employment in 2030 when implementing ambitious RES targets. 相似文献
18.
We examine the changes to the electric power system required to incorporate high penetration of variable wind and solar electricity generation in a transmission constrained grid. Simulations were performed in the Texas, US (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power meet up to 80% of the electric demand. The primary constraints on incorporation of these sources at large scale are the limited time coincidence of the resource with normal electricity demand, combined with the limited flexibility of thermal generators to reduce output. An additional constraint in the ERCOT system is the current inability to exchange power with neighboring grids. 相似文献
19.
Jean Philippe Praene Mathieu DavidFrantz Sinama Dominique MorauOlivier Marc 《Renewable & Sustainable Energy Reviews》2012,16(1):426-442
For the last two decades, economic development in Reunion Island has led to major structural changes. The latter have been characterized by an increase in energy demand per person. This demand is mostly related to a high population growth (1.55% per year). Reunion currently has 833,000 inhabitants. The population will rise to 1 million in 2030. Like most ultraperipheral regions of the European Union, Reunion is heavily dependent on imported fossil fuels for its energy production. The total primary energy consumption amounted to 1352 ktep in 2009 and 87.1% is imported energy. The development of various renewable energies such as solar energy, biomass, ocean energy, etc. is thus of priority concern to aim to achieve energetic independence. Just like other French overseas territories, Reunion policies have widely invested in Renewable Energy Sources (RES) since 2000. This paper aims at presenting the current status, the major achievements of policies and the future objectives in the deployment of renewable energy programmes. The perspective of a net zero energy island versus the pressure of the population is analysed. The barriers to penetration of RES in a small-scale territory are also discussed. 相似文献
20.
Several countries and states have set targets for substantially increasing renewable energy (RE) contributions in their electricity grids. As the potential for additional hydro-electricity is limited in the US most future RE penetration is envisioned to be in the form of wind and solar. Our simulations, based on hourly resource and load data, demonstrate the maximum penetration achievable in the grid managed by the New York Independent System Operator (NYISO), by wind- and solar-power independently, and when they are combined. By optimizing the synergy between these two intermittent resources, a maximum penetration of renewable-energy in the grid can be accomplished; this is shown for different scenarios of grid flexibility. For example, for an 80% flexible grid, a total penetration of 30% of wind and solar energy can be achieved in the NY state without adding storage and without having to dump more than 3% energy, whereas if this was to be met by wind alone, 12% of energy would have to be dumped. Considering that several US states and countries have high targets for renewable energy penetration, optimizing the mixture of RE to accomplish such goals is valuable for energy managing and planning. 相似文献