首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transportation has dominated global fuel consumption and greenhouse gas emissions have risen in an alarming rate. Gasoline and diesel consumption for road transport have a faster growing rate than other sector and the trend appeared to be rapidly moving upwards in the near future. This has caused much concern in many countries including Malaysia to improve the sustainable energy of this sector. The focus of this paper is to analyze the trends of energy pattern and emission of road transport in Malaysia. On top of that, the review of prospective policies such as fuel economy standards and fuel switching to natural gas as well as biodiesel are summarized in this study. The study found that there is an urgent need to adopt suitable energy policy to balance the energy demand and reduce emission in this sector. This study serves as a guideline for further investigation and research in order to implement and improve the transportation sector.  相似文献   

2.
Considerable attention has been paid to energy security and climate problems caused by road vehicle fleets. Fuel cell vehicles provide a new solution for reducing energy consumption and greenhouse gas emissions, especially those from heavy-duty trucks. Although cost may become the key issue in fuel cell vehicle development, with technological improvements and cleaner pathways for hydrogen production, fuel cell vehicles will exhibit great potential of cost reduction. In accordance with the industrial plan in China, this study introduces five scenarios to evaluate the impact of fuel cell vehicles on the road vehicle fleet greenhouse gas emissions in China. Under the most optimistic scenario, greenhouse gas emissions generated by the whole fleet will decrease by 13.9% compared with the emissions in a scenario with no fuel cell vehicles, and heavy-duty truck greenhouse gas emissions will decrease by nearly one-fifth. Greenhouse gas emissions intensity of hydrogen production will play an essential role when fuel cell vehicles' fuel cycle greenhouse gas emissions are calculated; therefore, hydrogen production pathways will be critical in the future.  相似文献   

3.
The emissions from road transport are serious threats to urban air quality and global warming. The first step to develop effective policies is to determine the source and amount of emissions produced. This paper attempts to review emissions from road transport using COPERT 4 model and examined possible emission mitigation strategies. In road transport, results have show that passenger cars are the main cause of CO2, N2O and CO emissions, while motorcycles are main source of hydrocarbon (HC) emissions. However, light duty vehicles and heavy duty vehicles are the main contribution of particulate matters. The total CO2 equivalent emissions for road transport in Malaysia are 59,383.51 ktonnes for year 2007. Further results show that CO2 emission is the primary source of greenhouse gas pollution which is 71% of the total CO2 equivalent. A parametric study was conducted to estimate the potential emission mitigation strategies for road transport by taking the emissions in 2007 as a reference year. It was observed that promoting the public transport is an effective strategy to reduce emissions and fuel consumption from the technical view point. It can totally save up to 1044 ktonnes of fuel consumption and total CO2 equivalents emissions can be decreased by 7%. It was noted that, fleet renewal and promoting natural gas vehicles will significantly contribute in the reduction of emissions in Malaysia.  相似文献   

4.
Road transport is responsible for a large and growing share of CO2 emissions in most countries. A number of new fuel‐efficient vehicle technologies and renewable transport fuels are possible alternatives to conventional options but their deployment relies strongly on different policy measures. Even though a future higher use of transport biofuels and electric vehicles is likely to increase the interaction between the transportation sector and the stationary energy system (heat, power, etc.), these systems are often analysed separately. In this study, a transport module is developed and integrated into the MARKAL_Nordic energy system model. The transport module describes a range of vehicle technologies and fuel options as well as different paths for conversion of primary energy resources into transport fuels. The integrated model is utilized to analyse the impact of transport fuel tax designs on future cost‐effective fuel and technology choices in the Swedish transportation sector, as well as the consequences of these choices on system costs and CO2 emissions. The model, which is driven by cost‐minimization, is run to 2050 with various assumptions regarding transport fuel tax levels and tax schemes. The results stress the importance of fuel taxes to accelerate the introduction of fuel‐efficient vehicle technologies such as hybrids and plug‐in hybrids. Tax exemptions can make biofuels an economically favourable choice for vehicle users. However, due to limitations in biomass supply, a too strong policy‐focus on transport biofuels can lead to high system costs in relation to the CO2 abatement achieved. The modelling performed indicates that the effects caused by linkages between the transportation sector and the stationary energy system can be significant and integrated approaches are thus highly relevant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
《Journal of power sources》2006,155(2):297-310
The transportation sector is responsible for a great percentage of the greenhouse gas emissions as well as the energy consumption in the world. Canada is the second major emitter of carbon dioxide in the world. The need for alternative fuels, other than petroleum, and the need to reduce energy consumption and greenhouse gases emissions are the main reasons behind this study. In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. The data collected from the literature shows that the energy consumption for the production of 1 kg of aluminum is five times higher than that of 1 kg of steel, although higher aluminum content makes vehicles lightweight and more energy efficient during the vehicle use stage. Greenhouse gas regulated emissions and energy use in transportation (GREET) software has been used to analyze the fuel life cycle. The life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting, and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that the use of coal to obtain hydrogen generates the highest emissions and consumes the highest energy. Comparing the overall life cycle of an ICEV and a FCV, the total emissions of an FCV are 49% lower than an ICEV and the energy consumption of FCV is 87% lower than that of ICEV. Further, CO2 emissions during the hydrogen fuel production in a central plant can be easily captured and sequestrated. The comparison carried out in this study between FCV and ICEV is extended to the use of recycled material. It is found that using 100% recycled material can reduce energy consumption by 45% and carbon dioxide emissions by 42%, mainly due to the reduced use of electricity during the manufacturing of the material.  相似文献   

6.
Interest in hydrogen as an energy carrier is growing as countries look to reduce greenhouse gas (GHG) emissions in hard-to-abate sectors. Previous works have focused on hydrogen production, well-to-wheel analysis of fuel cell vehicles, and vehicle refuelling costs and emissions. These studies use high-level estimates for the hydrogen transportation systems that lack sufficient granularity for techno-economic and GHG emissions analysis. In this work, we assess and compare the unit costs and emission footprints (direct and indirect) of 32 systems for hydrogen transportation. Process-based models were used to examine the transportation of pure hydrogen (hydrogen pipeline and truck transport of gaseous and liquified hydrogen), hydrogen-natural gas blends (pipeline), ammonia (pipeline), and liquid organic hydrogen carriers (pipeline and rail). We used sensitivity and uncertainty analyses to determine the parameters impacting the cost and emission estimates. At 1000 km, the pure hydrogen pipelines have a levelized cost of $0.66/kg H2 and a GHG footprint of 595 gCO2eq/kg H2. At 1000 km, ammonia, liquid organic hydrogen carrier, and truck transport scenarios are more than twice as expensive as pure hydrogen pipeline and hythane, and more than 1.5 times as expensive at 3000 km. The GHG emission footprints of pure hydrogen pipeline transport and ammonia transport are comparable, whereas all other transport systems are more than twice as high. These results may be informative for government agencies developing policies around clean hydrogen internationally.  相似文献   

7.
Explanations for, and indirect evidence of, imperfections in the market for private passenger vehicle fuel economy suggest there is a reasonable case for combining fuel economy standards and fuel or carbon taxes to contribute to an energy policy that aims to reduce greenhouse gas emissions and improve energy security. Estimates of key elasticities, including the rebound effect, indicate that the positive and negative side-effects of fuel economy measures on transport activities and external costs are limited. However, an energy policy for transport does not replace a transport policy that aims to manage the main transport externalities including congestion and local pollution. Conventional marginal cost estimates and standard cost-benefit reasoning suggest that policies that address congestion and local pollution likely bring benefits at least as large as those from fuel economy measures. But the large uncertainty on the possible effects of greenhouse gas emissions constitutes a strong challenge for standard cost-benefit reasoning. Emerging results from methods to cope with this uncertainty suggest that policies to stimulate the widespread adoption of low-carbon technologies in transport are justified.  相似文献   

8.
Food transport refrigeration is a critical link in the food chain not only in terms of maintaining the temperature integrity of the transported products but also its impact on energy consumption and CO2 emissions. This paper provides a review of (a) current approaches in road food transport refrigeration, (b) estimates of their environmental impacts, and (c) research on the development and application of alternative technologies to vapour compression refrigeration systems that have the potential to reduce the overall energy consumption and environmental impacts. The review and analysis indicate that greenhouse gas emissions from conventional diesel engine driven vapour compression refrigeration systems commonly employed in food transport refrigeration can be as high as 40% of the greenhouse gas emissions from the vehicle’s engine. For articulated vehicles over 33 ton, which are responsible for over 80% of refrigerated food transportation in the UK, the reject heat available form the engine is sufficient to drive sorption refrigeration systems and satisfy most of the refrigeration requirements of the vehicle. Other promising technologies that can lead to a reduction in CO2 emissions are air cycle refrigeration and hybrid systems in which conventional refrigeration technologies are integrated with thermal energy storage. For these systems, however, to effectively compete with diesel driven vapour compression systems, further research and development work is needed to improve their efficiency and reduce their weight.  相似文献   

9.
This is a study of world energy resource sustainability within the context of resource peak production dates, advanced energy use technologies in the transportation and electricity generation energy use sectors, and alternative fuel production including hydrogen. The finding causing the most concern is the projection of a peak in global conventional oil production between now and 2023. In addition, the findings indicate that the peak production date for natural gas, coal, and uranium could occur by 2050. The central question is whether oil production from non-conventional oil resources can be increased at a fast enough rate to offset declines in conventional oil production. The development of non-conventional oil production raises concerns about increased energy use, greenhouse gas emissions, and water issues. Due to the emerging fossil fuel resource constraints in coming decades, this study concludes that it is prudent to begin the development of hydrogen production and distribution systems in the near-term. The hydrogen gas is to be initially used by fuel cell vehicles, which will eliminate tailpipe greenhouse gas emissions. With a lowering of H2 production costs through the amortization of system components, H2 can be an economic fuel source for electricity generation post-2040.  相似文献   

10.
《Energy Policy》2005,33(12):1499-1507
With the rapid economic growth in China, the Chinese road transport system is becoming one of the largest and most rapidly growing oil consumers in China. This paper attempts to present the current status and forecast the future trends of oil demand and CO2 emissions from the Chinese road transport sector and to explore possible policy measures to contain the explosive growth of Chinese transport oil consumption. A bottom-up model was developed to estimate the historical oil consumption and CO2 emissions from China's road transport sector between 1997 and 2002 and to forecast future trends in oil consumption and CO2 emissions up to 2030. To explore the importance of policy options of containing the dramatic growth in Chinese transport oil demand, three scenarios regarding motor vehicle fuel economy improvements were designed in predicting future oil use and CO2 emissions. We conclude that China's road transportation will gradually become the largest oil consumer in China in the next two decades but that improvements in vehicle fuel economy have potentially large oil-saving benefits. In particular, if no control measures are implemented, the annual oil demand by China's road vehicles will reach 363 million tons by 2030. On the other hand, under the low- and high-fuel economy improvement scenarios, 55 and 85 million tons of oil will be saved in 2030, respectively. The scenario analysis suggests that China needs to implement vehicle fuel economy improvement measures immediately in order to contain the dramatic growth in transport oil consumption. The imminent implementation is required because (1) China is now in a period of very rapid growth in motor vehicle sales; (2) Chinese vehicles currently in the market are relatively inefficient; and (3) the turnover of a fleet of inefficient motor vehicles will take a long time.  相似文献   

11.
This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO2 emissions price pathway that achieves 450 ppmv CO2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy.  相似文献   

12.
The rapid growth of urban population and the development of road infrastructures in Tunisian cities have brought about many environmental and economic problems, including the rise scored in energy consumption and the increase in the quantity of gas emissions arising from road transport. Despite the critical nature of such problems, no policies have yet been adopted to improve energy efficiency in the transport sector. This paper aims to determine driving factors of energy consumption change for the road mode. It uses decomposition analysis to discuss the effects of economic, demographic and urban factors on the evolution of transport energy consumption. The main result highlighted in the present work is that vehicle fuel intensity, vehicle intensity, GDP per capita, urbanized kilometers and national road network are found to be the main drivers of energy consumption change in the road transport sector during 1990–2006 period. Consequently, several strategies can be elaborated to reduce road transport energy. Economic, fiscal and regulatory instruments can be applied in order to make road transport more sustainable.  相似文献   

13.
This paper develops a system dynamics model of Iceland׳s energy sector (UniSyD_IS) that is based on the UniSyD_NZ model of New Zealand׳s energy economy. The model focuses on the energy supply sector with endogenous representation of road transport energy demand. Equilibrium interactions are performed across electricity, hydrogen, biofuels, and road transport sectors. Possible transition paths toward a low-carbon transport in Iceland are explored with implications for fuel demand, greenhouse gas (GHG) emissions and associated costs. The consumer sector simulates the long-term evolution of light and heavy-duty vehicles through a vehicle choice algorithm that accounts for social influences and consumer preferences. Through different scenarios, the influences of four fundamental driving factors are examined. The factors are oil price, carbon tax, fuel supply-push, and government incentives. The results show that changes in travel demand, vehicle technologies, fuel types, and efficiency improvements can support feasible transition paths to achieve sufficient reduction in GHG for both 4 °C and 2 °C climate scenarios of the Nordic Energy Technology Perspectives study. Initial investment in supply infrastructure for alternative fuels will not only mitigate GHG emissions, but also could provide long-term economic benefits through fuel cost saving for consumers and reduced fuel import costs for government.  相似文献   

14.
As the population and economy continue to grow globally, demand for energy will continue to grow. The transportation sector relies solely on petroleum for its energy supply. The United States and China are the top two oil-importing countries. A major issue both countries face and are addressing is energy insecurity as a result of the demand for liquid fuels. Improvements in the energy efficiency of vehicles and the substitution of petroleum fuels with alternative fuels can help contain growth in the demand for transportation oil. Although most alternative transportation fuels — when applied to advanced vehicle technologies — can substantially reduce greenhouse emissions, coal-based liquid fuels may increase greenhouse gas emissions by twice as much as gasoline. Such technologies as carbon capture and storage may need to be employed to manage the greenhouse gas emissions of coal-based fuels. At present, there is no ideal transportation fuel option to solve problems related to transportation energy and greenhouse gas emissions. To solve these problems, research and development efforts are needed for a variety of transportation fuel options and advanced vehicle technologies.  相似文献   

15.
Fuel cell vehicles, as the most promising clean vehicle technology for the future, represent the major chances for the developing world to avoid high-carbon lock-in in the transportation sector. In this paper, by taking China as an example, the unique advantages for China to deploy fuel cell vehicles are reviewed. Subsequently, this paper analyzes the greenhouse gas (GHG) emissions from 19 fuel cell vehicle utilization pathways by using the life cycle assessment approach. The results show that with the current grid mix in China, hydrogen from water electrolysis has the highest GHG emissions, at 3.10 kgCO2/km, while by-product hydrogen from the chlor-alkali industry has the lowest level, at 0.08 kgCO2/km. Regarding hydrogen storage and transportation, a combination of gas-hydrogen road transportation and single compression in the refueling station has the lowest GHG emissions. Regarding vehicle operation, GHG emissions from indirect methanol fuel cell are proved to be lower than those from direct hydrogen fuel cells. It is recommended that although fuel cell vehicles are promising for the developing world in reducing GHG emissions, the vehicle technology and hydrogen production issues should be well addressed to ensure the life-cycle low-carbon performance.  相似文献   

16.
The global rise of greenhouse gas (GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. Alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. However, the overall transport policy framework in major world economies is geared towards the use of conventional fossil fuels. This paper evaluates the effectiveness and efficiency of current climate policies for road transport that (1) target fuel producers and/or car manufacturers, and (2) influence use of alternative fuels and technologies. With diversifying fuel supply chains, carbon intensity of fuels and energy efficiency of vehicles cannot be regulated by a single instrument. We demonstrate that vehicles are best regulated across all fuels in terms of energy per distance. We conclude that price-based policies and a cap on total emissions are essential for alleviating rebound effects and perverse incentives of fuel efficiency standards and low carbon fuel standards. In tandem with existing policy tools, cap and price signal policies incentivize all emissions reduction options. Design and effects of cap and trade in the transport sector are investigated in the companion article (Flachsland et al., in this issue).  相似文献   

17.
We adopted the simple average Divisia index approach to explore the impacts of factors on the carbon dioxide (CO2) emissions from road freight transportation in China from 1985 to 2007. CO2 emissions were investigated using the following as influencing factors: the emission coefficient, vehicle fuel intensity, working vehicle stock per freight transport operator, market concentration level, freight transportation distance, market share of road freight transportation, ton-kilometer per value added of industry, industrialization level and economic growth. Building on the results, we suggest that economic growth is the most important factor in increasing CO2 emissions, whereas the ton-kilometer per value added of industry and the market concentration level contribute significantly to decreasing CO2 emissions. We also discussed some recent important policies concerning factors contained in the decomposition model.  相似文献   

18.
Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses.  相似文献   

19.
The road transport and particularly the passenger cars are responsible for increasing the share of transport energy consumption and harmful emissions level growth. The fuel economy label is an informative tool to influence customers and manufacturers to put special care to the energy efficiency issue. The implementation of fuel economy label for motor vehicles in Malaysia will prevent the up going trend of petroleum consumption which will be beneficial to consumer and society. As a consequence, the harmful greenhouse gas (GHG) emissions that are the main causes of the global warming and air pollution will be reduced. Studies in developed countries show that implementing the fuel economy label is beneficial for society, government and the environment. This paper focused on a review of international experiences on fuel economy label. It also attempts to discuss about the energy savings possibilities that lead to reduce GHG emissions by implementing the program. The last but not least recommendation is the fact that the sooner the fuel economy label applies for the passenger cars in Malaysia will be more beneficial for the country.  相似文献   

20.
Plug-in hybrid electric vehicle (PHEV) technology is receiving attention as an approach to reducing US dependency on foreign oil and greenhouse gas (GHG) emissions from the transportation sector. PHEVs require large batteries for energy storage, which affect vehicle cost, weight, and performance. We construct PHEV simulation models to account for the effects of additional batteries on fuel consumption, cost, and GHG emissions over a range of charging frequencies (distance traveled between charges). We find that when charged frequently, every 20 miles or less, using average US electricity, small-capacity PHEVs are less expensive and release fewer GHGs than hybrid electric vehicles (HEVs) or conventional vehicles. For moderate charging intervals of 20–100 miles, PHEVs release fewer GHGs, but HEVs have lower lifetime costs. High fuel prices, low-cost batteries, or high carbon taxes combined with low-carbon electricity generation would make small-capacity PHEVs cost competitive for a wide range of drivers. In contrast, increased battery specific energy or carbon taxes without decarbonization of the electricity grid would have limited impact. Large-capacity PHEVs sized for 40 or more miles of electric-only travel do not offer the lowest lifetime cost in any scenario, although they could minimize GHG emissions for some drivers and provide potential to shift air pollutant emissions away from population centers. The tradeoffs identified in this analysis can provide a space for vehicle manufacturers, policymakers, and the public to identify optimal decisions for PHEV design, policy and use. Given the alignment of economic, environmental, and national security objectives, policies aimed at putting PHEVs on the road will likely be most effective if they focus on adoption of small-capacity PHEVs by urban drivers who can charge frequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号