首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了研究保护气体对铝合金CO2激光-熔化极惰性气体保护电弧复合焊的焊缝成形和熔深等的影响,采用不同流量的He和Ar混合保护气体在5052铝合金板上进行激光-熔化极电弧复合焊工艺试验的方法,进行了理论分析和实验验证,取得了焊缝成形、熔深、焊接电压等数据。结果表明,复合焊时采用单He气会造成熔化极惰性气体保护焊的电弧电压增大,电弧稳定性变差,从而影响铝合金CO2激光-熔化极惰性气体保护焊复合焊的熔深,少量的Ar气加入有利于改善焊缝表面质量和稳定电弧,提高焊缝熔深的效果,当V(Ar):V(He)=5:25时,熔深最大,但He气中加入大量的Ar气会降低焊缝熔深,甚至抑制激光深熔焊接;当采用纯Ar气作为保护气体时,虽然焊缝成形美观,但焊缝熔深很小。这一结果对铝合金CO2激光-熔化极惰性气体保护电弧复合焊焊缝成形质量分析具有较好的理论和工艺指导意义。  相似文献   

2.
激光-MIG复合焊接工艺参数对焊缝形状的影响   总被引:5,自引:0,他引:5  
本文以激光-MIG复合焊焊接工艺参数对焊缝形状的影响为出发点,对复合焊进行了初步的研究。实验研究了激光与电弧之间的距离、离焦量、焊接速度、送丝速度、电弧的类型以及激光的倾斜角度等工艺参数对复合焊焊缝的熔深熔宽的影响。实验表明,激光与电弧之间的距离(DL A)对复合焊的熔深影响较大,在DL A为2mm时,熔深达到最大。离焦量主要是通过影响能量密度来影响熔深和熔宽,在离焦量为+2mm时熔深达到最大,不同于单独激光焊负离焦时熔深最大。焊接速度有一个合适的范围,在这个范围内随着焊接速度的增加,熔深熔宽减少。送丝速度对复合焊的焊缝形状影响最大,送丝丝度较小时焊缝形状类似于单独激光焊;送丝速度过大电弧等离子体屏蔽激光,焊缝形状类似于MIG。激光的倾斜角度对复合焊的焊缝熔深熔宽也有一定的影响,当激光的倾斜角度为10oC时,熔深达到最大熔宽最小。  相似文献   

3.
采用高速摄影技术、宏观金相和焊接电信号采集对激光脉冲电弧复合焊焊缝成形形貌、熔滴过渡和焊接飞溅进行了研究。结果表明:采用激光脉冲电弧复合焊能改善焊缝成形,同时明显改变了焊接电流、电弧电压以及熔滴过渡模式。激光非脉冲电弧复合焊的熔滴和熔池以及熔滴和焊丝之间形成的液桥在过大电磁收缩力的作用下发生爆炸,此外,熔池表面的熔滴在电弧力和内部气体膨胀的作用下发生爆炸,从而产生飞溅。而采用激光脉冲电弧复合焊接工艺能明显降低焊接飞溅,这主要是因为脉冲电弧降低了短路过渡时的电流以及熔池的震荡。  相似文献   

4.
激光与脉冲MIG复合焊接试验研究   总被引:8,自引:0,他引:8  
本文研究了YAG激光-脉冲MIG电弧复合焊接铝合金的新工艺,设计制造了复合焊接几头,探讨了各种规范参数对焊缝成型的影响规律及激光与电弧的复合作用。结果表明,在比较宽的参数范围内YAG激光-脉冲MIG复合焊接铝合金焊缝成型美观,无气孔等缺陷,熔深与激光单独焊比增加4倍,与脉冲MIG焊接比增加1倍以上,焊速显著提高,是一种理想的焊接工艺。  相似文献   

5.
薛川  张宏  刘双宇  刘凤德 《应用激光》2012,32(5):390-397
以5.0 mm厚高强钢板为实验材料, 采用高速摄像拍摄及汉诺威分析仪, 对比研究了CO2激光-MAG电弧旁轴复合焊接与Nd∶YAG-MAG激光电弧旁轴复合焊接在不同的激光功率下的焊缝形貌、熔滴过渡形态、工艺稳定性及电信号差异。结果表明, 在焊接电流I=180 A, 电流电压U=26 V, 焊接速度v=1.2 m/min时改变激光功率发现, 相同激光功率比较Nd∶YAG-MAG激光电弧复合焊的焊缝面积与热影响区面积明显更大且表面飞溅较少; Nd∶YAG-MAG激光电弧复合焊熔滴过渡频率更高, 过渡形式基本为射滴过渡; 采集的电信号也显示Nd∶YAG-MAG激光电弧复合焊更加稳定。  相似文献   

6.
激光-电弧复合焊接相对激光焊接的优势之一是通过焊接材料的添加,调整焊缝的合金元素成分,改善焊缝组织与性能。焊接材料添加的合金元素在焊缝中的均匀分布是体现激光-电弧复合焊接这一优势的关键。然而,对于窄而深的激光-电弧复合焊焊缝,实现合金元素的均匀分布是非常困难的。研究了焊接工艺参数对CO2激光-熔化极气体保护(GMA)复合焊焊缝合金元素分布的影响规律,并讨论了熔池流动行为与合金元素分布均匀性的关系。结果表明,随着焊接速度的减小,CO2激光-GMA复合焊焊缝合金元素的分布趋向于均匀分布;随着坡口间隙的增大,焊缝合金元素均匀程度越高。焊接方向为激光在前时,激光-电弧复合焊接熔池流动为内向流动时(即熔池表面从熔池后部向小孔流动,并且小孔后沿液体向下流动),焊缝合金元素分布较均匀,其均匀性高于焊接方向为电弧在前时的情况。焊接方向对焊缝合金元素分布的影响规律主要取决于电弧拖拽力和熔滴对熔池冲击力的方向。当焊接方向为激光在前时,电弧拖拽力和熔滴对熔池冲击力指向小孔方向,促进了熔池内向流动。  相似文献   

7.
在有坡口间隙对接焊时,焊缝根部成形状态是衡量复合焊搭桥质量及其适应能力的重要指标。因此研究了CO2激光惰性气体金属弧焊(MIG)复合焊接3 mm厚不锈钢板时激光功率、电弧电流、激光-电弧距离、焊接速度、坡口间隙等工艺参数对根部熔宽的影响,并通过CCD摄像机对焊接过程中的等离子体进行了观察。研究表明,随着焊接参数的变化,CO2激光-MIG复合焊存在四种熔透状态,对某一间隙范围,选择合适的激光功率、电弧电流、激光电弧距离与焊接速度可以获得“适度熔透”的良好根部成形。激光功率、电弧电流过小,速度过大则会产生“未熔透”或“不稳定熔透”,反之则“过熔透”。间隙较大时,激光功率对熔透的影响较小。另外还研究了不同激光电弧距离对等离子体形态及其对熔透的影响。  相似文献   

8.
铝合金短路过渡熔化极惰性气体保护焊(MIG)焊缝成形较差、熔深浅。利用高速摄像与电信号同步采集系统,研究了铝合金MIG焊短路过渡时的熔滴过渡特性,解释了铝合金采用短路过渡焊接时焊缝成形差的原因。采用激光与电弧旁轴复合焊接形式,发现激光的加入改变了铝合金短路过渡的熔滴特性,当激光功率在某一临界值以下时,熔滴过渡稳定,焊缝成形得到显著改善;当激光功率超过临界值时,熔滴过渡不稳定,焊缝成形改善效果不明显。对比传统MIG和激光-MIG焊在采用短路过渡焊接铝合金时的焊缝宏观形貌,激光的加入使熔滴铺展良好,余高降低,熔深增加。研究表明,激光的加入,将工程上焊接铝合金时不常应用的短路过渡MIG焊接形式变得有实际应用价值。  相似文献   

9.
通过端接接头的激光-MAG复合焊接实验,研究了焊接方式、光丝间距、能量输入等对熔滴过渡行为及气孔缺陷特征的影响规律。研究结果表明:激光-MAG复合焊接比单激光焊更适用于端接接头的焊接,可以改善焊缝的成形,抑制气孔缺陷;激光引导方式优于电弧引导方式,得到的焊缝内的气孔缺陷较少;适当增加光丝间距有利于焊接过程的稳定性;电弧能量输入主要影响焊缝形态,而激光能量增加则会阻碍熔滴过渡,并使焊缝底部产生气孔缺陷。  相似文献   

10.
采用激光-电弧复合焊的方法焊接了HG785D高强钢,研究了不同热源顺序下激光功率和送丝速度对焊接过程的影响。观察了复合焊过程中等离子体的动态变化,并获取了不同热源顺序下等离子体的电子温度和电子密度,揭示了焊接过程热源耦合机理。结果表明,随着激光功率的增大,焊缝熔深先减小后增大;随着送丝速度的增大,焊缝熔深逐渐减小。相较于电弧先导,激光先导等离子体的体积较大且电子温度较高,焊缝熔深较大,同时接头的抗拉强度较大,但塑性较弱,且接头各区域的显微硬度较大。  相似文献   

11.
激光-电弧复合焊接的热源相互作用   总被引:1,自引:0,他引:1  
为了研究激光-电弧复合焊接的热源相互作用,提升对复合焊接复杂物理过程的认识程度,进一步优化工艺参数,采用CO2轴快流激光器和钨极氩弧焊机在3mm厚316L不锈钢板上进行了复合焊接试验研究。定义无量纲参数——复合焊接熔化效率增量δ来表征热源相互作用的变化。结合焊缝成形、等离子体形貌,通过δ半定量分析了激光、电弧热源间距和能量配比对热源相互作用的影响。结果表明,在优化的参数组合下,δ高达83.6%。其中,电弧对工件的预热作用能够提高激光能量的利用率,增强热源相互作用,但是激光-电弧等离子体相互作用才是提高热源相互作用程度的关键机制。  相似文献   

12.
严军  曾晓雁  高明  邓业平 《激光技术》2007,31(5):489-492
为了进一步提高316L不锈钢的可焊性,采用Rofin Sinar 5kW快轴流CO2激光器和Miller钨极惰性气体(TIG)焊机,对3mm厚316L不锈钢进行了一系列CO2激光-TIG电弧复合焊接工艺试验,研究了激光功率、电弧电流、热源间距等工艺参数对焊缝成形的影响规律。在激光功率大于2.5kW时,会产生小孔效应,其对复合焊接熔深影响显著;而当电弧电流小于150A时,焊接熔宽与两热源的热输入关系密切,当电流大于150A时,仅电弧电流是焊接熔宽的决定性因素;热源间距存在一个最佳值2mm~3mm,此时,焊接熔深可提高1.46倍~2.54倍。研究结果表明,复合焊接提高了316L不锈钢的可焊性。  相似文献   

13.
摘要:为了进一步提高316L不锈钢的可焊性,采用3mm厚316L不锈钢进行了一系列CO2激光—TIG (tungsten inert gas) 电弧复合焊接工艺试验,详细研究了激光功率、电弧电流、热源间距等工艺参数对焊缝成形的影响规律。结果表明:激光功率是焊接熔深的决定因素,而电弧能量对焊接熔宽影响显著;热源间距存在一个最佳值2~3mm,此时,焊接熔深可提高1.46~~2.54倍。  相似文献   

14.
低碳钢CO2激光-脉冲MAG电弧复合焊接工艺研究   总被引:4,自引:3,他引:1  
高明  曾晓雁  胡乾午 《激光技术》2006,30(5):498-500,506
为了进一步了解激光-电弧复合焊接机理及其影响因素,采用A3钢进行了CO2激光-脉冲金属熔化极活性气体保护焊(MAG)电弧复合焊接的工艺研究。分析了CO2激光-脉冲MAG电弧复合焊接中焊接方向、热源间距、激光功率、电弧电流、焊接速度等工艺参数的影响。结果表明,采用适当的参数,激光电弧的能量能够有效耦合,增强焊接效果。其中,复合焊接熔深是单独激光的1.6倍、MAG电弧焊接的2.2倍;焊接速度是单独激光的2.7倍。  相似文献   

15.
激光-电弧复合焊接足近几年在国际上得到迅速发展和廊用的焊接前沿新技术,是材料优质高效连接的最佳熔焊工艺.激光-电弧复合焊接结合了激光焊和电弧焊两种工艺,影响焊接过程的参量较多,而这些因素的设置对焊接过程的稳定性、焊接接头的质量都有重要影响.从激光器类型的选择、辅助电源类型的选择、焊接方向、激光离焦量、激光-电弧之间距离...  相似文献   

16.
激光-电弧复合焊接的研究进展   总被引:23,自引:3,他引:20  
肖荣诗  吴世凯 《中国激光》2008,35(11):1680-1685
激光-电弧复合焊技术是一种具有较好工业应用前景的新技术,目前已经引起了国内外研究人员的重视.激光-电弧复合焊接将两种物理性质和能量传输机制截然不同的热源复合在一起,实现优势互补,提高焊接效率和质量.结合作者的研究工作,概括了激光-电弧复合焊接中激光与电弧相互作用、熔滴过渡特性、小孔和熔池动态行为、复合焊接工艺技术及应用等方面的最新研究进展.  相似文献   

17.
激光-电弧复合焊接技术充分集成了激光焊接和电弧焊接两种工艺的优点,是一种新型优质的焊接技术,具有良好的工业应用前景。介绍了激光-电弧复合焊接的特点和激光与电弧的相互作用机制;总结了常见激光-电弧复合焊接技术的研究进展;最后对激光-电弧复合焊接技术在汽车车身制造中的应用情况进行了概述。  相似文献   

18.
利用余高-熔宽比表示焊缝表面铺展性并与焊缝余高一起作为参数来评价激光+电弧复合热源焊缝的表面成形,通过试验研究了Nd:YAG激光+脉冲MAG电弧复合热源焊接过程中焊接规范参数对复合热源焊缝表面成形的影响,并分析了激光对复合热源焊缝表面成形的影响。研究结果表明,在电弧功率变化过程中,激光对复合热源焊缝表面成形影响较小,但随着激光功率的增大,其对焊缝表面成形的影响也逐渐增大。焊接速度变化过程中,激光束能量的加入不仅改善焊缝表面成形还极大地提高了焊接速度,而在光丝间距和离焦量变化过程中,激光束对复合热源焊缝表面成形的影响很小。  相似文献   

19.
CO2激光-MIG复合焊接射滴过渡的熔滴特性   总被引:1,自引:0,他引:1  
本文以 5 .0mm厚LF6防锈铝合金板为试验材料 ,进行了CO2 激光 -MIG电弧射滴过渡的旁轴复合焊接试验。试验结果表明 ,在激光锁孔效应下 ,CO2 激光 -MIG复合焊接铝合金不仅具有在较宽的参数范围内焊缝成形美观 ,熔深熔宽增加 ,无气孔等优点 ;而且还发现 ,与单MIG焊接的熔滴过渡特性相比 ,复合焊接过程中一方面由于激光能量和激光锁孔效应产生的大量金属等离子体对熔滴的热辐射作用 ,促进了熔滴过渡 ;另一方面由于激光等离子体对熔滴的吸引力和金属蒸气对熔滴的反冲力又阻碍了熔滴过渡 ,两者综合作用改变了熔滴过渡方式和过渡频率。在此基础上 ,通过对复合焊接过程中焊接电流和电弧电压波形以及熔滴过渡特征的分析 ,进一步研究了激光功率、激光与电弧的作用位置以及激光束离焦量对复合焊接过程中熔滴过渡频率的影响规律。  相似文献   

20.
10Ni3CrMoV钢T型接头CO_2激光复合焊工艺与组织   总被引:1,自引:0,他引:1  
激光复合焊接综合了激光焊和电弧焊的优点,使其成为船用大厚度钢板高效焊接最有前景的方法之一。研究了船用钢板的高功率CO2激光焊接工艺,重点分析了保护气体成分对焊缝化学成分的影响,激光与电弧间距对焊接过程稳定性的影响。在工艺参数优化的基础上实现14 mm厚10Ni3CrMoV钢板的高功率激光T型结构焊接。获得的焊缝通过X光探伤检验,没有发现裂纹,存在少量不连续的小气孔。采用光学显微镜分析了焊接接头微观组织,结果表明,微观组织显示了焊接接头较好的综合力学性能,尤其是经历重熔与热处理后的焊缝组织发生明显细化。测试了焊接接头不同部位的硬度,焊接接头最大硬度小于360 HV,符合船用技术要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号