首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From previous studies on the induction of DNA synthesis in quiescent primary baby rat kidney cells by adenovirus type 5 (Ad5) E1A deletion mutants, we concluded that induction is prevented only when cellular proteins p300 and pRb are both uncomplexed with E1A (J.A. Howe, J.S. Mymryk, C. Egan, P.E. Branton, and S.T. Bayley, Proc. Natl. Acad. Sci. USA 87:5883-5887, 1990). We have now examined induction by these same mutants in virus lacking the E1B region, so that cellular p53 was no longer complexed to the E1B 55-kDa protein. E1A mutants that fail to bind pRb induced DNA synthesis at a significantly lower level in Ad5 lacking E1B than in Ad5 containing E1B. Apparently, therefore, uncomplexed p53 can partially replace p300 in cooperating with pRb to suppress DNA synthesis in baby rat kidney cells.  相似文献   

2.
Recent reports suggest that an early region 1B (E1B) 55, 000-molecular-weight polypeptide (55K)-null adenovirus type 5 (Ad5) mutant (dl1520) can replicate to the same extent as wild-type (wt) Ad5 in cells either deficient or mutated in p53, implicating p53 in limiting viral replication in vivo. In contrast, we show here that the replicative capacity of Ad5 dl1520 is wholly independent of host cell p53 status, as is the replicative capacity of comparable Ad12 E1B 54K-null adenoviruses (Ad12 dl620 and Ad12 hr703). Furthermore, we show that there is no requirement for complex formation between p53 and Ad5 E1B 55K or Ad12 E1B 54K for a productive infection, such that wt Ad5 and wt Ad12 will both replicate in cells which are null for p53. In addition, we find that these Ad5 and Ad12 mutant viruses induce S phase irrespective of the p53 status of the cell and that, therefore, S-phase induction does not correlate with the replicative capacity of the virus. Interestingly, the replicative capacities of the large E1B-null adenoviruses correlated positively with the ability to express E1B 19K and were related to the ability to repress premature adenovirus-induced apoptosis. Infection of primary human cells indicated that Ad5 dl1520, wt Ad5, and wt Ad12 replicated better in cycling normal human skin fibroblasts (HSFs) than in quiescent HSFs. Thus, the cell cycle status of the host cell, upon infection, also influences viral yield.  相似文献   

3.
4.
We have explored a role for the adenovirus (Ad5) E1b58kDa/p53 protein complex in adenovirus replication. This was done by using virus mutants containing different defects in the E1b58kDa gene and cell lines that express either a wild-type p53 protein or a mutant p53 protein. We find that infection of wild-type p53-containing cells with wild-type Ad5 causes a shutoff of p53 and alpha-actin protein synthesis by distinct mechanisms, but neither occurs in mutant p53 cells. Our data also indicate that the shutoff is dependent on formation of the p53/E1b complex and may also involve another virus protein, E4ORF6. Following from these observations we asked whether failure to form the complex resulted in impaired adenovirus replication. Our experiments showed that neither wild-type Ad5 nor the E1b mutant dl338 could replicate in cells expressing a mutant p53 protein, but that wild-type adenovirus replicated well in wild-type p53-expressing cells. Collectively, our data suggest that the interaction between p53 and the E1b58kDa protein is necessary for efficient adenovirus replication. This is the first time such a direct link between the complex and virus replication has been demonstrated. These data raise serious questions about the usefulness of E1b-defective viruses in tumor therapy.  相似文献   

5.
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.  相似文献   

6.
7.
We have studied the degradation of a set of long peptides (9-30 amino acids) from the nucleoprotein of influenza A. In common for all these peptides is the core sequence NH2-Ser-Arg-Tyr-Trp-Ala-Ile-Arg-Thr-Arg-COOH, NP383-391, known as an antigenic peptide specific for the HLA-B27 class I antigen. We show that this peptide is generated by enriched cytosolic proteasomes of two sizes, 20S and 12S. The 12S proteasome is the precursor, the preproteasome, to the 20S mature proteasome as shown by pulse-chase experiment and is most likely responsible for the proteolytic activity in the 12S region. Cleavage at the N-terminus is distinct and restricted to residue 383, independent of the N-terminal extension of the peptide. The C-terminus is generated via cleavage at three sites. Intermediate and final peptide products were identified by mass spectrometry. Finally, we show that the NP383-391 peptide generated by proteasomes in vitro is functional inasmuch as it possesses the ability to stimulate assembly of in vitro translated HLA-B27 antigens.  相似文献   

8.
The C-terminal binding protein (CtBP) has previously been shown to bind to a highly conserved six-amino acid motif very close to the C terminus of adenovirus early region 1A (Ad E1A) proteins. We have developed an enzyme-linked immunosorbent assay that has facilitated the screening of synthetic peptides identical or similar to the binding site on Ad E1A for their ability to bind CtBP and thus inhibit its interaction with Ad12 E1A. It has been shown that amino acids both C-terminal and N-terminal to the original proposed binding site contribute to the interaction of peptides with CtBP. Single amino acid substitutions across the binding site appreciably alter the Kd of the peptide for CtBP, indicative of a marked reduction in the affinity of the peptide for CtBP. The solution structures of synthetic peptides equivalent to the C termini of both Ad5 and Ad12 E1A and two substituted forms of these have been determined by proton NMR spectroscopy. Both the Ad12 and Ad5 peptides dissolved in trifluoroethanol/water mixtures were found to adopt regular secondary structural conformations seen as a series of beta-turns. An Ad12 peptide bearing a substitution that resulted in only very weak binding to CtBP (Ad12 L258G) was found to be random coil in solution. However, a second mutant (Ad12 V256K), which bound to CtBP rather more strongly (although not as well as the wild type), adopted a conformation similar to that of the wild type. We conclude that secondary structure (beta-turns) and an appropriate series of amino acid side chains are necessary for recognition by CtBP.  相似文献   

9.
10.
11.
Functional p53 protein is associated with the ability of cells to arrest in G1 after DNA damage. The E6 protein of cancer-associated human papillomavirus type 16 (HPV-16) binds to p53 and targets its degradation through the ubiquitin pathway. To determine whether the ability of E6 to interact with p53 leads to a disruption of cell cycle control, mutated E6 proteins were tested for p53 binding and p53 degradation targeting in vitro, the ability to reduce intracellular p53 levels in vivo, and the ability to abrogate actinomycin D-induced growth arrest in human keratinocytes. Mutations scattered throughout the amino terminus, either zinc finger or the central region but not the carboxy terminus, severely reduced the ability of E6 to interact with p53. Expression of HPV-16 E6 or mutated E6 proteins that bound and targeted p53 for degradation in vitro sharply reduced the level of intracellular p53 induced by actinomycin D in human keratinocytes. A perfect correlation between the ability of E6 proteins to reduce the level of intracellular p53 and their ability to block actinomycin D-induced cellular growth arrest was observed. These results suggest that interaction with p53 is important for the ability of HPV E6 proteins to circumvent growth arrest.  相似文献   

12.
Oncogenic transformation by human adenoviruses requires early regions 1A and 1B (E1A and E1B) and provides a model of multistep carcinogenesis. This study shows that the metabolic stabilization of p53 observed in adenovirus 5 (Ad5)-transformed cells can occur in untransformed cells expressing E1A alone. Stabilized p53 was localized to the nucleus and was indistinguishable from wild-type p53 with respect to its interactions with hsc70, PAb420, Ad5 p55E1B, and SV40 large T antigen. Moreover, binding of Ad5 p55E1B or SV40 large T antigen had no additional effect on p53 levels or turnover. Higher levels of p53 were also induced in a variety of cell types within 40 hr after transferring E1A genes. E1A also caused cells to lose viability by a process resembling apoptosis. The apoptosis appeared to involve p53, because p53 levels reverted to normal in surviving cells that had lost E1A, and E1B protected cells from the toxic effects of E1A. These results suggest that (1) the involvement of p53 in tumor suppression and/or apoptosis can be regulated at the level of protein turnover, and (2) a major oncogenic role for E1B is to counter cellular responses to E1A (i.e., stabilization of p53 and associated apoptosis) that preclude transformation by E1A alone. This represents the first physiological setting in which high levels of endogenous p53 are induced in response to an oncogenic challenge, with the apparent consequence of suppressing transformation.  相似文献   

13.
14.
Early region 3 (E3) of human adenoviruses (Ads) codes for proteins that appear to control viral interactions with the host. For example, the most abundant E3 protein, E3/19K, inhibits the transport of newly synthesized class I major histocompatibility molecules to the cell surface, thereby interfering with antigen presentation. So far, the E3 regions of Ad subgroups A, B, C, and F have been characterized. We have cloned the E3A region of Ad type 19a (Ad19a), which belongs to the largest subgroup, D, and causes epidemic keratoconjunctivitis in humans. The sequence reveals five open reading frames (ORFs) with the potential to encode the Ad19 equivalent of pVIII, as well as proteins 12.2K, 16.2K, and 18.6K. The last ORF predicts a novel 49K protein which has no counterpart in other subgroups. Both the sequence and the overall organization of the E3 region from Ad19a shows a closer relationship to group B than to group C Ads. The 18.6K ORF represents the Ad19 homolog of the Ad2 E3/19K protein. By using 293 cells stably transfected with the Adl9a E3A region, we showed by immunoprecipitation, pulse-chase experiments, and fluorescence-activated cell sorter analysis that the Ad19 E3/19K protein binds to and prevents the transport of major histocompatibility complex molecules to the cell surface. The similar but distinct functional activity of the Ad19 E3/19K protein, combined with the new sequence which differs from those of subgroup B and C proteins, allows a more precise definition of amino acids essential for HLA binding.  相似文献   

15.
16.
First-generation adenovirus (Ad) vectors that had been rendered replication defective by removal of the E1 region of the viral genome (DeltaE1) or lacking the Ad E3 region in addition to E1 sequences (DeltaE1DeltaE3) induced G2 cell cycle arrest and inhibited traverse across G1/S in primary and immortalized human bronchial epithelial cells. Cell cycle arrest was independent of the cDNA contained in the expression cassette and was associated with the inappropriate expression and increase in cyclin A, cyclin B1, cyclin D, and cyclin-dependent kinase p34(cdc2) protein levels. In some instances, infection with DeltaE1 or DeltaE1 DeltaE3 Ad vectors produced aneuploid DNA histogram patterns and induced polyploidization as a result of successive rounds of cell division without mitosis. Cell cycle arrest was absent in cells infected with a second-generation DeltaE1Ad vector in which all of the early region E4 except the sixth open reading frame was also deleted. Consequently, E4 viral gene products present in DeltaE1 or DeltaE1 DeltaE3 Ad vectors induce G2 growth arrest, which may pose new and unintended consequences for human gene transfer and gene therapy.  相似文献   

17.
18.
The 436-amino acid protein enolase 1 from yeast was degraded in vitro by purified wild-type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at different times revealed a processive degradation mechanism and a length distribution of fragments ranging from 3 to 25 amino acids with an average length of 7 to 8 amino acids. Surprisingly, the average fragment length was very similar between wild-type and mutant 20S proteasomes with reduced numbers of active sites. This implies that the fragment length is not influenced by the distance between the active sites, as previously postulated. A detailed analysis of the cleavages also allowed the identification of certain amino acid characteristics in positions flanking the cleavage site that guide the selection of the P1 residues by the three active beta subunits. Because yeast and mammalian proteasomes are highly homologous, similar cleavage motifs might be used by mammalian proteasomes. Therefore, our data provide a basis for predicting proteasomal degradation products from which peptides are sampled by major histocompatibility complex class I molecules for presentation to cytotoxic T cells.  相似文献   

19.
Control and targeting of the proteolytic activity of the major intracellular protease, the proteasome, is accomplished by various regulatory protein complexes that may form higher-order assemblies with the proteasome. An activator of proteolytic activity, PA700, has been shown to have an ATP-dependent stimulatory effect on the peptidase activities of the proteasome, and another protein factor, the modulator, further enhances the effect of PA700. Here we show that the addition of PA700 endows the proteasome with the ability to cleave ubiquitinated proteins, a property associated with the previously isolated 26 S form of the proteasome. The modulator further stimulates this specific activity, without having any such effect on the proteasome alone. Using electron microscopy, we show that addition of PA700 causes the appearance of protein "caps" at one or both ends of proteasomes, forming structures that are indistinguishable from 26 S proteasomes. Quantitation of the numbers of uncapped, singly capped and doubly capped complexes indicates cooperativity in the association of PA700 with the two ends of the proteasome. Addition of modulator protein makes no further structural modification that is detectable by electron microscopy, but does cause an increase in the number of capped complexes visible at subsaturating concentrations of PA700. Hence PA700 converts the proteasome both functionally and structurally to the 26 S form, and the modulator promotes this transformation, apparently without stable association with the resulting complex.  相似文献   

20.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号