首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of 17 alpha-ethinylestradiol treatment of rats on various transport functions in isolated basolateral and canalicular liver plasma membrane vesicles. Both membrane subfractions were purified to a similar degree from control and cholestatic livers. Although moderate membrane lipid alterations were predominantly observed in basolateral vesicles, no change in basolateral Na+/K(+)-ATPase activity was found. Furthermore, while Na(+)-dependent taurocholate uptake was decreased by approximately 40% in basolateral vesicles, the maximal velocity of ATP-dependent taurocholate transport was decreased by 63% in canalicular membranes. In contrast, only minimal changes or no changes at all were observed for electrogenic taurocholate transport in "cholestatic" canalicular membranes and total microsomes, respectively. However, canalicular vesicles from cholestatic livers also exhibited marked reductions in ATP-dependent transport of S-(2,4-dinitrophenyl)glutathione and in Na(+)-dependent uptake of adenosine, while in the same vesicles HCO3-/SO4- exchange and Na+/glycine cotransport activities were markedly stimulated. These data show that in addition to the previously demonstrated sinusoidal transport abnormalities ethinylestradiol-induced cholestasis is also associated with multiple canalicular membrane transport alterations in rat liver. Hence, functional transport alterations at both polar surface domains might ultimately be responsible for the inhibitory effects of estrogens on the organic anion excretory capacity and on bile formation in rat liver.  相似文献   

2.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

3.
Glutamine plays an important role in fetal nutrition. This study explored the transport of [3H]glutamine into apical and basal predominant membrane vesicles derived from rat and human placenta. Na+-dependent glutamine transport was present in both apical and basal predominant vesicles derived from 20- and, to a lesser degree, 14-day gestation rat placenta. Amino-acid transport systems A, ASC-like, B(o,+) (in apical membrane vesicles) and, perhaps, y+L were involved in Na+-dependent glutamine transport. Na+-dependent glutamine uptake into human placental microvillus and basolateral membrane vesicles also occurred via several distinct transport activities. Glutamine transport via system N was not detected in either rat or human placental preparations. Na+-dependent glutamine transport in the rat was more pronounced in basal as compared to apical membrane vesicles. Conversely, in the human preparations, activity was significantly higher in microvillus as compared to basolateral membrane vesicles. It is concluded that Na+-dependent glutamine transport occurs through a variety of transport agencies in both the rat and human placenta. Transport varies with ontogeny and between species.  相似文献   

4.
This study was undertaken to assess the short-term effects of EGF on sodium and glucose uptake, glucose metabolism and Na+/K(+)-ATPase activity in isolated enterocytes of rats. Jejunal cells exposed to EGF had a significantly greater total uptake of sodium compared to controls after 6 min. Kinetic analysis of glucose transport across BBMV's demonstrated similar Km values but a significant increase of the Vmax in vesicles prepared from cells first exposed to EGF as compared to controls. EGF was also associated with a significant increase in glucose metabolism of jejunal enterocytes after 15 min. The activity of Na+/K(+)-ATPase increased in jejunal enterocytes exposed to EGF. The increase in Na+/K(+)-ATPase activity of the cells following EGF exposure was not accompanied by an increase in immunodetectable total or assembled Na+/K(+)-ATPase protein. EGF's effect on enzyme activity was abolished by removing NaCl from the incubation solution, and by preincubating the enterocytes with phlorizin prior to addition of EGF. Preincubation with amiloride did not inhibit the effect of EGF on Na+/K(+)-ATPase. The results confirm that EGF promotes uptake of both sodium and glucose by the jejunal mucosal cells, and suggest the effect of EGF on glucose and sodium is mediated through the brush-border membrane glucose-sodium transporter. The increase in Na+/K(+)-ATPase activity that occurs with EGF appears to be secondary to a rise in intracellular Na+ concentration. The short-term effects of EGF on glucose and sodium transport by the small intestine may have potential therapeutic implications.  相似文献   

5.
The transport of various organic anions via the pathway that mediates the exchange of urate or p-aminohippurate (PAH) for OH- or Cl- in dog renal microvillus membrane vesicles was investigated. The pH gradient-stimulated uptakes of tracer urate and PAH were significantly inhibited by 5 mM PAH, n-valerate, lactate, beta-hydroxybutyrate, pyruvate, acetoacetate, maleate, succinate, alpha-ketoglutarate, oxaloacetate, and cis-aconitate but not by 5 mM acetate, malate, oxalate, or citrate. the pH dependence of inhibition suggested that it was in their monovalent forms that these acid anions interacted with the urate exchange pathway. Outwardly directed gradients of succinate, lactate, and PAH stimulated uphill urate accumulation. Imposition of an inside-alkaline pH gradient stimulated the uphill accumulation of lactate and succinate. Na+ cotransport pathways for lactate and succinate were also present. In the presence of an inwardly directed Na+ gradient, lactate stimulated the uphill accumulation of urate, indicating that the pathways mediating Na+-lactate cotransport and lactate-urate exchange coexisted in at least some membrane vesicles. We conclude that the anion exchange pathway for urate in dog renal microvillus membrane vesicles has affinity for additional organic anions and can function in multiple exchange modes. Exchange of luminal urate or Cl- for intracellular organic anions or OH- is a possible mechanism for effecting uphill anion reabsorption in the proximal tubule.  相似文献   

6.
Due to their ubiquitous occurrence in the plant kingdom, plant phenolics, including monomeric cinnamic acids, are ingested by man and animals in variable amounts with their natural diets. Recently, Na(+)-dependent saturable transport of cinnamic acid across the brush-border membrane of rat jejunum has been described. It was the aim of the present study to characterize this mechanism in more detail. We therefore determined the transport kinetics of mucosal uptake of radioactively labelled cinnamic acid under various conditions using a short-term mucosal uptake technique. In addition, the transfer of cinnamic acid across the jejunal wall was investigated using everted intestinal sacs. Investigations of the kinetics of cinnamic acid uptake by the mid-jejunal mucosa revealed the involvement of two transport components, a diffusive Na(+)-independent mechanism and a saturable Na(+)-dependent mechanism. The results obtained with everted sacs provided further evidence of the existence of an active Na+ gradient-driven transport of cinnamic acid across the intestinal epithelium. In the presence of Na+, a significant accumulation of cinnamate occurred inside the serosal compartment and this was strongly inhibited by serosal ouabain. A decrease in the extracellular pH stimulated mucosal cinnamate uptake by increasing the apparent affinity (1/km). This may be attributable to the involvement of a transmembrane H+ gradient in Na(+)-dependent cinnamate transport because the protonophore FCCP caused a significant reduction of cinnamate uptake only in the presence of Na+. The kinetics of cinnamate transport in the absence or presence of a surplus of either unlabelled cinnamate or unlabelled butyrate indicates a reduction in the apparent affinity of the Na(+)-dependent mechanism involved in cinnamate uptake. These results may be explained by a modification of the mechanism by the intracellular pH. Additionally, competitive inhibition of cinnamate uptake by substances structurally related to cinnamic acid may also be involved.  相似文献   

7.
The anatomical localization of the Na+/bile acid cotransport system from rabbit small intestine was determined using brush border membrane vesicles prepared from eight different segments of the small intestine. Na(+)-dependent transport activity for bile acids, both for [3H]taurocholate and [3H]cholate, was found in the distal segment 8 only representing the terminal 12% of the small intestine. In contrast, the Na(+)-dependent D-glucose transporter and the H(+)-dependent oligopeptide transporter were found over the whole length of rabbit small intestine in all segments. Photoaffinity labeling with 7,7-azo- and 3,3-azo-derivatives of taurocholate with subsequent fluorographic detection of labeled polypeptides after one- and two-dimensional gel electrophoresis showed that an integral membrane polypeptide of M(r) 87,000 is present in the entire small intestine, whereas an integral membrane protein of M(r) 93,000 together with a peripheral membrane protein of M(r) 14,000 are exclusively expressed in the distal small intestine correlating with Na(+)-dependent bile acid transport activity. Photoaffinity labeling with the cationic bile acid derivative 1-(7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta[3 beta-3H]cholan-24-oyl)-1,2- diaminoethane hydrochloride and 7,7-azo-3 alpha,12 beta-dihydroxy-5 beta[12 alpha-3H]cholan-24-oic acid did not result in a specific labeling of the above mentioned proteins, demonstrating their specificity for physiological bile acids. Photoaffinity labeling of the 93- and 14-kDa bile acid-binding proteins was strongly Na(+)-dependent. Significant labeling of the 93- and 14-kDa proteins occurred only in the presence of Na+ ions with maximal labeling above 100 mM [Na+] showing a parallel [Na+] dependence to transport activity. Inactivation of Na(+)-dependent [3H]taurocholate uptake by treatment of ileal brush border membrane vesicles with 4-nitrobenzo-2-oxa-1,3-diazol chloride led to a parallel decrease in the extent of photoaffinity labeling of both the 93- and 14-kDa protein. Sequence analysis of the membrane-bound 14-kDa bile acid-binding protein surprisingly revealed its identity with gastrotropin, a hydrophobic ligand-binding protein exclusively found in the cytosol from ileocytes and thought to be involved in the intracellular transport of bile acids from the brush border membrane to the basolateral pole of the ileocyte. In conclusion, the present studies suggest that both an integral 93- and a peripheral 14-kDa membrane protein, identified as gastrotropin, and both exclusively expressed in the terminal ileum, are essential components of the Na+/bile acid cotransport system in rabbit terminal ileum.  相似文献   

8.
Increased Na+/H+ exchanger activity is associated with cellular hyperplasia. Cellular hyperplasia is an adaptive response to small-intestinal resection. Therefore, we hypothesized that the small-intestinal Na+/H+ exchanger activity increases in response to small-intestinal resection. Twenty-one-d-old, male Sprague-Dawley rats were randomly divided to receive either a 70% small intestinal resection (n = 59), or a mid-small intestinal transection (n = 49). Seven d postoperatively, the animals were killed and the Na+/H+ exchanger activity of the intestinal remnants was studied by a well validated brush border membrane vesicle technique. The initial rate of Na+ uptake in the presence of an outwardly directed pH gradient and the Vmax of the amiloride-sensitive Na+ uptake were significantly increased (p < 0.01 and p < 0.001, respectively) in the resection as compared with the transection remnants and to a greater magnitude in the distal as compared with the proximal remnants. Km values were not significantly different. The amiloride-sensitive Na+ uptake in the setting of various intravesicular pH was significantly greater (p < 0.001) in the distal resection as compared with the distal transection remnants, with points of enhanced Na+/H+ exchanger activity of intravesicular pH 6.62 and 6.87, respectively. The presence and activation of the Na+/H+ exchanger's internal modifier site was confirmed by demonstrating the effect of intravesicular pH on Na+ efflux. The present study demonstrates an up-regulation of intestinal Na+/H+ exchange activity in a small-bowel resection model in the weanling rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The organic anions, p-aminohippurate (PAH) and fluorescein, are transported across the basolateral membrane of the renal proximal tubule in exchange for intracellular alpha-ketoglutarate (alpha KG), a mechanism indirectly coupled to sodium via Na+/alpha KG cotransport. To determine whether this mechanism mediates the basolateral transport of other organic anions, transport of the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in rat renal cortical slices and basolateral membrane vesicles. In slices, uptake of 2,4-D increased steadily over time, approaching steady-state tissue/medium ratios of approximately 8 after 60 min. Probenecid, PAH and chlorophenol red inhibited steady-state uptake of 2,4-D. Accumulation of 10 microM 2,4-D was stimulated 2-fold by 60 microM glutarate; other dicarboxylic acids failed to stimulate uptake. In the presence of sodium, the addition of 5 mM LiCl or 2 mM ouabain to the bathing medium abolished glutarate stimulation. Removal of sodium from the bathing medium reversibly inhibited uptake as much as 75%. Furthermore, PAH inhibited 2,4-D uptake by slices in a dose-dependent manner, and increasing the external 2,4-D concentration decreased the inhibitory potency of PAH. In basolateral membrane vesicles, unlabeled 2,4-D inhibited sodium glutarate-coupled uptake of 3H-labeled PAH and 2,4-D in a concentration-dependent manner. Moreover, concentrative uptake of 2,4-D into vesicles could be driven by an outwardly directed gradient of glutarate or alpha KG that was generated by lithium-sensitive Na+/dicarboxylate cotransport or imposed experimentally. An outwardly directed gradient of unlabeled 2,4-D or PAH also stimulated uptake of 2,4-D. Based on these data, basolateral accumulation of 2,4-D by the renal proximal tubule is mediated by 2,4-D/alpha KG exchange, a mechanism energetically coupled to Na+/alpha KG cotransport and shared with PAH.  相似文献   

10.
Tricarballylic acid is a non-metabolizable rumen bacterial fermentation product of the naturally occurring tricarboxylic acid trans-aconitic acid. The aim of the present study was to investigate intestinal absorption of tricarballylate using brush-border membrane vesicles (BBMVs) isolated from the proximal jejunum of steers by a Ca2+ precipitation method with subsequent differential centrifugation. Transport of tricarballylate was investigated indirectly (influence of tricarballylate on the uptake of 14C-labelled citrate) as well as directly (uptake of 3H-labelled tricarballylate). Citrate as well as tricarballylate uptake (at a concentration of 0.05 mmol l-1) was strongly stimulated by an inwardly directed initial Na+ gradient. Furthermore, transport of both tricarboxylates under Na+ gradient conditions was clearly enhanced by lowering the extravesicular pH from 7.8 to 5.6. The imposition of an inwardly directed H+ gradient (pH(out)/pH(in) = 5.6/7.8) further enhanced the intravesicular accumulation of citrate as well as of tricarballylate compared with pH(out)/pH(in) = 5.6/5.6. Unequivocal evidence for a common transport site for tricarballylate and citrate was obtained from 'cis-inhibition' and 'trans-stimulation' of Na(+)-dependent citrate uptake by tricarballylate. In further experiments the influence of different substances on the uptake of 3H-labelled tricarballylate was evaluated. Unlabelled tricarballylate, citrate, succinate as well as trans- and cis-aconitate significantly inhibited the accumulation of 3H-labelled tricarballylate by BBMVs. Tricarballylate uptake as a function of the tricarballylate concentration revealed a Na(+)-dependent saturable component (apparent kinetic parameters: maximal transport capacity (Vmax) = 119 pmol (mg protein)-1 (3s)-1; affinity constant (Km) = 0.097 mmol l-1) and a Na(+)-independent diffusional component (diffusion constant: 169 nl (mg protein)-1 (3s)-1). It is concluded that tricarballylate and citrate are transported across the intestinal brush-border membrane by a common, Na(+)-dependent transport mechanism. The stimulatory influence of a low extravesicular pH most probably indicates that the protonated forms of tricarboxylates are better transported than the trivalent species.  相似文献   

11.
The thermophilic, peptidolytic, anaerobic bacterium Clostridium fervidus is unable to generate a pH gradient in the range of 5.5-8.0, which limits growth of the organism to a narrow pH range (6.3-7.7). A significant membrane potential (delta psi approximately -60 mV) and chemical gradient of Na+ (-Z delta pNa approximately -60 mV) are formed in the presence of metabolizable substrates. Energy-dependent Na+ efflux is inhibited by the Na+/H+ ionophore monensin but is stimulated by uncouplers, suggesting that the Na+ gradient is formed by a primary pumping mechanism rather than by secondary Na+/H+ antiport. This primary sodium pump was found to be an ATPase that has been characterized in inside-out membrane vesicles and in proteoliposomes in which solubilized ATPase was reconstituted. The enzyme is stimulated by Na+, resistant to vanadate, and sensitive to nitrate, which is indicative of an F/V-type Na(+)-ATPase. In the proteoliposomes Na+ accumulation depends on the presence of ATP, is inhibited by the ATPase inhibitor nitrate, and is completely prevented by the ionophore monensin but is stimulated by protonophores and valinomycin. These and previous observations, which indicated that secondary amino acid transport uses solely Na+ as coupling ion, demonstrate that energy transduction at the membrane in C. fervidus is exclusively dependent on a Na+ cycle.  相似文献   

12.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 +/- 0.1 in ring stage parasites and 7.31 +/- 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na(+)-free medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H(+)-efflux at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na(+)-dependent H(+)-efflux was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-N-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2, [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H(+)-efflux were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H(+)-egress is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis.  相似文献   

13.
In most cell types, including resting skeletal muscle fibers, internal pH (pHi) is kept constant at a relatively alkaline level. The high pHi is obtained in spite of a chronic acid load resulting from cellular metabolism and passive influx of protons driven by electrochemical forces. Regulation of pHi depends on continuous activity of membrane transport systems that mediate an outflux of H+ (or bicarbonate influx), whereby the acid load is counterbalanced. The transporters involved in muscle pH regulation at rest are the Na+/H+ exchange system as well as the Na+-dependent and Na+-independent Cl- bicarbonate transport systems. The Na+/H+ exchanger seems to be active at resting pHi levels in skeletal muscle. Therefore, pH homeostasis in skeletal muscle most likely involves an equilibrium between counter-directed H+ fluxes. A minor fraction of H+ release during intense exercise is mediated by the Na+/H+ exchanger. The capacity of this system is increased with training and hypoxia in rat skeletal muscle. The dominant acid extruding system associated with intense exercise is the lactate/H+ co-transporter. It has been demonstrated that the capacity of the lactate/H+ co-transporter of rat skeletal muscle is upregulated with training and chronic electrical stimulation, and that it is reduced upon denervation and hindlimb unweighting. Moreover, athletes can have an elevated lactate/H+ co-transport capacity, whereas the thigh muscle of spinal cord-injured individuals has a lower transport capacity than the one of healthy untrained subjects. Thus, it appears that the capacity of the lactate/H+ transporter is affected by the level of muscle activity in both rats and humans. In addition, the rate of H+ release from muscle may also be influenced by capillarization and local blood flow. Finally the resulting pH displacement during acid accumulation is determined by the cellular buffer capacity, which may also undergo adaptive changes.  相似文献   

14.
Macrophages perform phagocytic and effector activities in a number of different tissues. The environment of the inflammatory foci in which they function is often acidic and contains an abundance of lactate. We characterized the ability of thioglycollate-elicited mouse peritoneal macrophages to accumulate lactate from the medium and to use this lactate to maintain intracellular energy stores. Lactate uptake was stereospecific for L-lactate and was inhibited by the organic anion transport blocker probenecid but not by concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid that block anion exchangers. L-[14C]Lactate uptake was not affected by variation of the extracellular Na+ concentration but was enhanced by acidification of the extracellular medium, suggesting that lactate uptake was mediated by a proton cotransport system. The enhanced accumulation of [14C]-lactate seen in medium at pH 6.0 to 6.5 was inhibited by probenecid or by an excess of unlabeled L-lactate. When macrophages were incubated in PBS without glucose for 6 h, intracellular stores of phosphocreatine were 13 nmol/mg of protein, compared with 44 nmol/mg of protein in cells incubated in medium containing glucose. When lactate was substituted for glucose, phosphocreatine stores were 32 nmol/mg of protein. These studies reveal that macrophages take up L-lactate in a pH-dependent manner and that lactate uptake occurs via a probenecid-inhibitable monocarboxylate transporter; they suggest that macrophages can utilize this lactate as an energy source.  相似文献   

15.
The interaction of carnitine with human placental brush-border membrane vesicles was investigated. Carnitine was found to associate with the membrane vesicles in a Na(+)-dependent manner. The time course of this association did not exhibit an overshoot, which is typical of a Na+ gradient-driven transport process. The absolute requirement for Na+ was noticeable whether the association of carnitine with the vesicles was measured with a short time incubation or under equilibrium conditions, indicating Na(+)-dependent binding of carnitine to the human placental brush-border membranes. The binding was saturable and was of a high-affinity type with a dissociation constant of 1.37 +/- 0.03 microM. Anions had little or no influence on the binding process. The binding process was specific for carnitine and its acyl derivatives. Betaine also competed for the binding process, but other structurally related compounds did not. Kinetic analyses revealed that Na+ increased the affinity of the binding process for carnitine and the Na+/carnitine coupling ratio for the binding process was 1. The dissociation constant for the interaction of Na+ with the binding of carnitine was 24 +/- 4 mM. This constitutes the first report on the identification of Na(+)-dependent high-affinity carnitine binding in the plasma membrane of a mammalian cell. Studies with purified rat renal brush-border membrane vesicles demonstrated the presence of Na+ gradient-driven carnitine transport but no Na(+)-dependent carnitine binding in these membrane vesicles. In contrast, purified intestinal brush-border membrane vesicles posses neither Na+ gradient-driven carnitine transport nor Na(+)-dependent carnitine binding.  相似文献   

16.
The mechanism of uptake of sparfloxacin, a new quinolone, by intestinal brush-border membrane vesicles was investigated to clarify whether there is a common transport process for new quinolones mediated by the diffusion potential across the intestinal membrane bilayer. Sparfloxacin was taken up pH-dependently by rat intestinal brush-border membrane vesicles, behaviour analogous to that of organic cations including enoxacin and ciprofloxacin. Transient overshooting uptake of this quinolone was observed in the presence of an outward H+ gradient. Momentary dissipation of the H+ gradient by addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone did not affect the uptake of sparfloxacin, and a marked but incomplete reduction in the H+-sensitive overshooting uptake of sparfloxacin was apparent in the voltage-clamped brush-border membrane vesicles. Furthermore, a valinomycin-induced K+-diffusion potential (interior negative) and an inward C1--diffusion potential stimulated the initial uptake of sparfloxacin at pH 5.5. Sparfloxacin uptake was inhibited by tetracaine and imipramine. The inhibitory effect of these cations correlated well with changes in membrane surface charges induced by the presence of tetracaine or imipramine. These results indicate that sparfloxacin transport across the brush-border membrane depends upon the inside-negative ionic diffusion potential, that the H+- or K+-diffusion-potential-dependent uptake of sparfloxacin by intestinal brush-border membrane vesicles is affected by the membrane surface potential and that inhibition of sparfloxacin uptake originates from changes in the membrane surface potential caused by the organic cations.  相似文献   

17.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. We identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanism's of uphill Cl- entry across the apical membrane of proximal tubule cells. For steady state Cl- absorption to occur by these mechanisms, formate and oxalate must recycle from lumen to cell. Recycling of formate from lumen to cell may occur by H(+)-coupled formate transport and nonionic diffusion of formic acid in parallel with Na(+)-H+ exchange. Oxalate recycling from lumen to cell may take place by oxalate-sulfate exchange in parallel with Na(+)-sulfate cotransport. Cl- exit across the basolateral membrane is most likely mediated by Cl- channels. To identify the Na(+)-H+ exchanger (NHE) isoform(s) expressed on the brush border membrane of proximal tubule cells, we developed isoform-specific monoclonal and polyclonal antibodies. We found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the thin and thick limbs of the loop of Henle. NHE3 is also present in a population of subapical intracellular vesicles, suggesting possible regulation by membrane trafficking. The inhibitor sensitivity of Na(+)-H+ exchange in renal brush border vesicles indicates that it is mediated by NHE3 under baseline conditions and during up-regulation by metabolic acidosis. Increased apical membrane Na(+)-H+ exchange activity in response to metabolic acidosis and during renal maturation is associated with increased NHE3 protein expression. Finally, we found that the organic anion-dependent absorption of Cl- is markedly down-regulated in metabolic acidosis in parallel with the up-regulation of brush border membrane Na(+)-H+ exchange. Thus, differential regulation of apical membrane ion exchangers may provide a mechanism to regulate the relative rates of NaHCO3 and NaCl reabsorption.  相似文献   

18.
To evaluate the effect of cadmium intoxication on renal transport systems for organic anions and cations, transport of p-aminohippurate (PAH) and tetraethylammonium (TEA) were studied in renal cortical plasma membrane vesicles isolated from cadmium-intoxicated rats. Cadmium intoxication was induced by daily injections of CdCl2 (2 mg Cd/kg.day sc) for 2-3 weeks. Renal plasma membrane vesicles were prepared by Percoll gradient centrifugation and magnesium precipitation method. Vesicular uptake of substrate was determined by rapid filtration technique using Millipore filter. The cadmium treatment resulted in a marked attenuation of Na(+)-dependent, alpha-ketoglutarate (alpha KG)-driven PAH uptake in the basolateral membrane vesicle (BLMV), and this was due to a reduction in Vmax and not K(m). The Na(+)-alpha KG symport activity of the BLMV was not affected by 2-week cadmium treatment, but it was significantly inhibited by 3-week cadmium treatment. On the other hand, the alpha KG-PAH antiport activity of the BLMV appeared to be markedly suppressed in 2-week as well as 3-week cadmium-treated animals. The cadmium treatment inhibited the proton gradient-dependent TEA transport in the brush-border membrane vesicle (BBMV), and this was associated with a reduction in Vmax with no change in K(m). These results indicate that cadmium exposures may impair the capacities for organic anion transport in the proximal tubular basolateral membrane and organic cation transport in the luminal membrane. The cadmium effect on organic anion transport is attributed mainly to an inhibition of dicarboxylate-organic anion antiport system.  相似文献   

19.
PURPOSE: To determine whether an Na+-dependent monocarboxylate transport process exists on the mucosal side of the pigmented rabbit conjunctiva and to evaluate how it may contribute to the absorption of ophthalmic monocarboxylate drugs. METHODS: L-lactate was used as a model substrate. The excised pigmented rabbit conjunctiva was mounted in a modified Ussing chamber for the measurement of short-circuit current (Isc) and 14C-L.-lactate transport. RESULTS: When added to the mucosal side at 37 degrees C and at pH 7.4, applications of as much as 40 mM L- and D-lactate increased Isc in a saturable manner. By contrast, no change in Isc was observed at 4 degrees C or under the mucosal Na+-free condition. 14C-L-lactate transport in the mucosal-to-serosal (m-s) direction at 0.01 mM revealed directionality, temperature dependency, Na+ dependency, and ouabain sensitivity, but not pH dependency. L-lactate transport in the m-s direction consisted of a saturable Na+-dependent process by the transcellular pathway and a nonsaturable process by the paracellular pathway. For the saturable process, the apparent Michaelis-Menten constant was 1.9 mM, the maximum flux was 8.9 nanomoles/cm2 per hour, and the apparent Na+ :L-lactate coupling ratio was 2:1. 14C-L-lactate transport in the m-s direction was significantly inhibited (46% to 83%) by the mucosal presence of various monocarboxylate compounds, but not by dicarboxylate compounds, zwitterionic compound, D-glucose, amino acids, and peptidomimetic antibiotics. Monocarboxylate nonsteroidal anti-inflammatory drugs and the antibacterial fluoroquinolones inhibited 14C-L-lactate transport by 40% to 85%, whereas prostaglandins and cromolyn had no effect. CONCLUSIONS: An Na+-dependent monocarboxylate transport process that may be used by non-steroidal anti-inflammatory and fluoroquinolone antibacterial drugs for transport appears to be present on the mucosal side of the pigmented rabbit conjunctiva. A possible physiologic role for the Na+-dependent monocarboxylate transport process may be to salvage tear lactate.  相似文献   

20.
The uptake of choline by the tegument of Hymenolepis diminuta was investigated. The Q10 at pH 7.0 was 1.7, with an Ea of 90 kJ.mol-1. Choline transport was pH sensitive: At pH 5.0, a Na(+)-independent mechanism predominated, which was inhibited by 100 nM benzamil, 130 mM Na+, and 300 microM verapamil. At pH 7.0, the Na(+)-independent mechanism was inhibited by 130 mM Na+, amiloride, and EIPA with IC50's of 130 microM and 30 microM, respectively, and by benzamil with IC50's of 100 pM (high-potency Benzamil Sensitive Component; HBSC) and 70 microM (low-potency Benzamil Sensitive Component; LBSC). Calcium-free saline enhanced choline uptake non-specifically. Lanthanum3+, Gd3+, gramicidin, nigericin, and high-K+ did not affect choline uptake at pH 5.0 or pH 7.0, and 10 microM verapamil was without effect at pH 5.0, suggesting no significant role for the electrical potential difference across the brush-border membrane, a Na+/H+ antiporter, a Na+/Ca2+ antiporter, or Ca2+ channels in choline uptake. Under physiological conditions, the HBSC accounts for approximately 25% of the total choline taken up at pH 5.0, while the LBSC accounts for approximately 55% of the choline taken up at pH 7.0. The data suggest novel choline transporting mechanisms; an HBSC which displays properties in common with apical Na+ channels, and a unique LBSC of choline transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号