首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
实验研究了乙醇钠催化下橡胶籽油与乙醇进行酯交换反应制备生物柴油的工艺条件。通过正交实验和单因素实验,发现酯交换反应的最佳工艺条件:催化剂用量为油重的1.0%,醇油物质的量比为15∶1,反应温度为78℃,搅拌时间为120 min,在此反应条件下,橡胶籽油转化率为92.14%。  相似文献   

2.
小桐油制备生物柴油的研究   总被引:12,自引:1,他引:11  
实验研究了以小桐子油为原料,采用循环气相酯化-酯交换-水蒸气蒸馏法制备生物柴油的工艺过程。着重研究了降低原料酸值以及酯交换过程的优化条件。试验结果表明。气相酯化法可在很短的时间内将原料的酸值降到酯交换对原料的酸值要求;酯交换反应的最佳操作条件为:甲醇用量为油重的20%,催化剂用量为油重的1%左右,反应温度为60—70℃,反应时间为90—120min。  相似文献   

3.
采用正交试验和单因素试验的方法研究了氨基磺酸催化菜籽油及废油脂与甲醇的酯交换过程,考察了醇油物质的量比、催化剂用量、反应温度和反应时间对反应收率的影响。结果表明:菜籽油酯交换的最佳反应条件为醇油物质的量比6∶1,氨基磺酸用量为原料油质量的1.0%,反应温度60℃,反应时间20 min,此工艺条件下,脂肪酸甲酯的收率达到95.6%;废油脂酯交换的最佳反应条件为醇油物质的量比8∶1,氨基磺酸用量为原料油质量的1.0%、反应温度65℃,反应时间30 min,此工艺条件下,脂肪酸甲酯的收率达到87.5%。利用红外光谱表征了菜籽油和生物柴油的结构,气相色谱分析了生物柴油的组成。  相似文献   

4.
以热榨麻疯果油为原料,采用液体碱酯交换法制备生物柴油,研究了最佳的脱胶、脱酸及酯交换反应条件.试验结果表明,最佳脱胶工艺条件:温度为80℃、磷酸用量为原料油质量的0.2%、反应时间为30min、加水量为磷脂质量的3倍:最佳脱酸工艺条件:温度为85℃、超碱量为原料油质量的0.2%、搅拌速度为70r/min、反应时间为30min;最佳酯交换反应条件:甲醇:油=6:1(物质的量比)、催化剂(甲醇钠)用量为原料油质量的1.2%、反应温度为65℃、反应时间为20min,甲酯转化率可达94%以上,甲酯产品各项性能指标达到GB/T20828-2007要求.  相似文献   

5.
硫酸氢钠催化生物柴油合成反应的研究   总被引:5,自引:0,他引:5  
以固体酸硫酸氢钠(NaHSO4·H20)为催化剂,以菜籽油和甲醇为反应物进行酯交换反应制备脂肪酸甲酯(生物柴油).采用正交实验考察了各因素对生物柴油产率的影响,得出最佳反应条件:反应温度为90℃,反应时间为12h,醇油物质的量比为40:1,催化剂用量为菜籽油质量的6%.极差顺序为温度、反应时间、醇油物质的量比、催化剂用量.  相似文献   

6.
以花椒籽油为原料,对KOH催化其与甲醇发生酯交换反应制备生物柴油进行研究.采用物理萃取法降低花椒籽油中游离脂肪酸的含量,三次萃取后酸值达到2 mgKOH/g以下.研究了花椒籽油和甲醇在氢氧化钾催化下的酯交换反应.进行了不同醇油摩尔比、催化剂用量、反应时间、反应温度等反应条件下对产率的影响,得到最佳反应条件为醇油物质的量之比为12∶1,催化剂添加量为油脂质量的1.2%,反应温度为60 ~65℃,反应时间为45 min.  相似文献   

7.
以花椒籽油为原料,对KOH催化其与甲醇发生酯交换反应制备生物柴油进行研究。采用物理萃取法降低花椒籽油中游离脂肪酸的含量,三次萃取后酸值达到2 mgKOH/g以下。研究了花椒籽油和甲醇在氢氧化钾催化下的酯交换反应。进行了不同醇油摩尔比、催化剂用量、反应时间、反应温度等反应条件下对产率的影响,得到最佳反应条件为醇油物质的量之比为12∶1,催化剂添加量为油脂质量的1.2%,反应温度为60~65℃,反应时间为45 min。  相似文献   

8.
SO42-/TiO2-ZrO2固体酸催化乌桕籽油制备生物柴油的研究   总被引:1,自引:0,他引:1  
乌桕籽油是一种可再生的木本植物油料,可与甲醇发生酯交换反应制得生物柴油.试验表明,固体酸催化剂SO42-/TiO2-ZrO2对乌桕籽油酯交换反应表现出了较高的催化活性,当反应温度为150 ℃、醇油物质的量比为12:1、催化剂用量为乌桕籽油质量的5%、反应时间为6 h时,乌桕籽油的酯化率达到95%以上,催化剂重复和再生使用效果良好.同时,对该催化剂的SEM,TEM,XRD,BET结构表征表明,该催化剂表面呈多孔状,颗粒大小分布在10~100 nm,比表面积为114 m2/g,是一种纳米固体催化剂.  相似文献   

9.
以棉籽酸化油和甲醇为原料,采用酸催化两步法制备生物柴油.第一步为酸催化酯化和一次酯交换反应,第二步为酸催化二次酯交换反应.通过大量试验优化了反应条件:在酯化和一次酯交换阶段,醇油质量比为0.5:1,催化剂用量为棉籽酸化油质量的3%,反应温度为90℃,反应时间为150 min:在二次酯交换阶段,醇油质量比为0.7:1,催化剂用量为棉籽油质量的4%,反应时间为90min.在此条件下,生物柴油的产率达到94%以上,产品质量符合国家标准.  相似文献   

10.
研究合成功能化酸性离子液体1-丙基磺酸-3-甲基咪唑硫酸氢盐([PrSO_3HMIm]HSO_4),采用核磁共振、红外光谱、热重分析等分析法进行表征验证,并用其催化菜籽油酯交换反应制备生物柴油,考察醇油物质的量之比、反应温度、反应时间和离子液体用量对酯交换反应的影响及离子液体的稳定性。结果表明:在n甲醇∶n菜籽油=10∶1,反应温度120℃,反应时间8 h,离子液体用量为菜籽油质量7%的条件下,生物柴油收率可达95.56%,且稳定性良好,循环使用5次催化性能未明显降低。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
14.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

15.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号