首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.  相似文献   

2.
A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single degree of freedom model should be improved.A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design.The established model includes the functions of the torsion springs,the synchronization mechanism and the lock-up impact.A numerical computation method is proposed to solve the dynamics coupling problem.Then considering the drive torque requirement calculated by the proposed model,a root hinge drive assembly is developed based on the reliability engineering design methods,and dual actuators are used as a redundancy design.Pseudo-efficiency is introduced and the major factors influencing the(pseudo-)efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis.A ground prototype deployment test is conducted to verify the capacity of the drive assembly.The test device consists of a large-area solar array system and a root hinge drive assembly.The RHDA development time is about 43 s.The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis,and the results show that the presented model and the calibration methods are proper enough.  相似文献   

3.
Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment.  相似文献   

4.
DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.  相似文献   

5.
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.  相似文献   

6.
Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of~25μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.  相似文献   

7.
Compared with the traditional non-cutting measurement,machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users.However,measurement and calculation of the machining tests in the literature are quite difficult and time-consuming.A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed.Firstly,a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics.Then,the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool.By adopting the error-sensitive vectors in the matrix calculation,the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors.According to our previous work,the kinematic errors of C-axis can be treated as the known quantities,and the kinematic errors of A-axis can be obtained from the equations.This method was tested in Mikron UCP600 vertical machining center.The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis.Experimental results demonstrated that the proposed method can reduce the complexity,cost,and the time consumed substantially,and has a wider applicability.This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.  相似文献   

8.
It is significant to develop a robot hand with high rigidity by a 6-DOF parallel manipulator(PM).However,the existing6-DOF PMs include spherical joint which has less capability of pulling force bearing,less rotation range and lower precision under alternately heavy loads.A novel 6-DOF PM with three planar limbs and equipped with three fingers is proposed and its kinematics and statics are analyzed systematically.A 3-dimension simulation mechanism of the proposed manipulator is constructed and its structure characteristics is analyzed.The kinematics formulae for solving the displacement,velocity,acceleration of the platform,the active legs and the fingers are established.The statics formulae are derived for solving the active forces of PM and the finger mechanisms.An analytic example is given for solving the kinematics and statics of proposed manipulator and the analytic solved results are verified by the simulation mechanism.It is proved from the error analysis of analytic solutions and simulation solutions that the derived analytic formulae are correct and provide the theoretical and technical foundations for its manufacturing,control and application.  相似文献   

9.
This article highlights the importance of complementing classes through educational videos, especially in disciplines exclusively with lectures. This proposition is exemplified through basic concepts in alternating current for both single-phase and three-phase circuits, which are critical in the formation of electrical engineers, mechanics, chemists, etc. The main objective of conducting educational videos is to make learning more attractive and stimulate interest in acquiring the knowledge of certain topics, given their importance in professional life in different engineering areas. The videos, filmed in laboratory and of short duration, aim to complement and consolidate the content taught in the classroom lectures.  相似文献   

10.
The accurate measurement on the compressibility and thermal expansion coefficients of density standard liquid at 2329kg/m3(DSL-2329) plays an important role in the quality control for silicon single crystal manufacturing. A new method is developed based on hydrostatic suspension principle in order to determine the two coefficients with high measurement accuracy. Two silicon single crystal samples with known density are immersed into a sealed vessel full of DSL-2329. The density of liquid is adjusted with varying liquid temperature and static pressure, so that the hydrostatic suspension of two silicon single crystal samples is achieved. The compression and thermal expansion coefficients are then calculated by using the data of temperature and static pressure at the suspension state. One silicon single crystal sample can be suspended at different state, as long as the liquid temperature and static pressure function linearly according to a certain mathematical relationship. A hydrostatic suspension experimental system is devised with the maximal temperature control error ±50 μK; Silicon single crystal samples can be suspended by adapting the pressure following the PID method. By using the method based on hydrostatic suspension principle, the two key coefficients can be measured at the same time, and measurement precision can be improved due to avoiding the influence of liquid surface tension. This method was further validated experimentally, where the mixture of 1, 2, 3-tribromopropane and 1,2-dibromoethane is used as DSL-2329. The compressibility and thermal expansion coefficients were measured, as 8.5′10–4 K–1 and 5.4′10–10 Pa–1, respectively.  相似文献   

11.
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.  相似文献   

12.
Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works.This paper is a part of a general research designed to the application of topology as a new approach for the modeling of mechatronic systems.Particularly,the modeling of a one stage spur gear transmission using a topological approach is tackled.This approach is based on the concepts of topological collections and transformations and implemented using the MGS(modeling of general systems)language.The topological collections are used to specify the interconnection laws of the one stage spur gear transmission and the transformations are used to specify the local behavior laws of its different components.In order to validate this approach,simulation results are presented and compared with those obtained with MODELICA language using Dymola solver.Since good results are achieved,this approach might be used as a basis of unification for the modeling of mechatronic systems.  相似文献   

13.
This paper introduces an efficient holistic approach to the design optimization of lightweight structures of braided fiber-reinforced plastic material. The approach aims to mitigate the paradox of making design decisions at early development phases, when necessary information is incomplete or lacking detail so as to properly make these decisions. However, expert knowledge is available and though it is imprecise in nature, it can compensate to create useful models. Manufacturing effort for the braiding process has been described by information accumulated via interviews with braiding experts. This information is then modelled using the soft-computing approach by fuzzy-rule-based systems. The resulting models can further be efficiently integrated into the structural design optimization process. A multidisciplinary design optimization is facilitated considering several aspects including manufacturing effort and structural mechanics, which can be used in early design phases leading to more holistic designing and, thereby, unlocking lightweight and cost-reducing potentials. Benefits of this method, including viability and ease of implementation, are proven by investigations on two academic test problems before advancing to the challenging automotive engineering design problem of the roadster A-pillar.  相似文献   

14.
The intermittent connection(IC)of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem,which may result in system level failures or safety issues.However,there is no online IC location identification method available to detect and locate the position of the problem.To tackle this problem,a novel model based online fault location identification method for localized IC problem is proposed.First,the error event patterns are identified and classified according to different node sources in each error frame.Then generalized zero inflated Poisson process(GZIP)model for each node is established by using time stamped error event sequence.Finally,the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters.To illustrate the proposed method,case studies are conducted on a 3-node controller area network(CAN)test-bed,in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches.The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0),and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node,which agrees with the experimental setup.The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.  相似文献   

15.
It is a common phenomenon that the cracks originating from a hole can cause structural damage in engineering.However,the fracture mechanics studies of hole edge crack problems are not sufficient.The problem of an elliptical hole with two collinear edge cracks of unequal length in an infinite plate under uniform tension at infinity is investigated.Based on the complex variable method,the analytical solutions of stress functions and stress intensity factors are provided.The stress distribution along the axes and the edge of the elliptical hole is given graphically.The numerical results show that there is obvious stress concentration near the hole and cracks,and the stresses tend to applied loads at distances far from the defect,which conform to Saint-Venant’s principle.Hence,the stress functions are proved to be right.Under special conditions,the present configuration becomes the Griffith crack,two symmetrical cracks emanating from an elliptical hole,two cracks of unequal length emanating from a circular hole,a crack at the edge of a circular hole,or a crack emanating from an elliptical hole.Compared with available results,stress intensity factors for these special shapes of ellipses and cracks show good coincidence.The stress intensity factor for two cracks of unequal length at the edge of an elliptical hole increases with the crack length and the major-to-minor axis ratio of the elliptical hole.The stress distribution in an infinite plate containing an elliptic hole with unsymmetrical cracks is given for the first time.  相似文献   

16.
Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.  相似文献   

17.
Pulse transit time (PTT) is used as a noninvasive and cuff-less parameter to estimate blood pressure. In this paper, we develop an algorithm to obtain PTT rapidly, which is appropriate for micro-processor and could achieve good accuracy in PTT, even in noisy measurements. The algorithm is based on finite impulse response (FIR) filter to reduce the noise and an adaptive threshold to detect the significant points of ECG and PPG. Evaluation of this method is based on the signals from our PTT-based blood pressure devices. It is shown that the method works well for PPT calculation.  相似文献   

18.
Longitudinal vibration,torsional vibration and their coupled vibration are the main vibration modes of the crankshaft-sliding bearing system.However,these vibrations of the propeller-crankshaft-sliding bearing system generated by the fluid exciting force on the propeller are much more complex.Currently,the torsional and longitudinal vibrations have been studied separately while the research on their coupled vibration is few,and the influence of the propeller structure to dynamic characteristics of a crankshaft has not been studied yet.In order to describe the dynamic properties of a crankshaft accurately,a nonlinear dynamic model is proposed taking the effect of torsional-longitudinal coupling and the variable inertia of propeller,connecting rod and piston into account.Numerical simulation cases are carried out to calculate the response data of the system in time and frequency domains under the working speed and over-speed,respectively.Results of vibration analysis of the propeller and crankshaft system coupled in torsional and longitudinal direction indicate that the system dynamic behaviors are relatively complicated especially in the components of the frequency response.For example,the 4 times of an exciting frequency acting on the propeller by fluid appears at 130 r/min,while not yield at 105 r/min.While the possible abnormal vibration at over-speed just needs to be vigilant.So when designing the propeller shafting used in marine diesel engines,strength calculation and vibration analysis based only on linear model may cause great errors and the proposed research provides some references to design diesel engine propeller shafting used in large marines.  相似文献   

19.
Comparative Analysis of PSO Algorithms for PID Controller Tuning   总被引:1,自引:0,他引:1  
The active magnetic bearing(AMB)suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions.Although the development of various control methods is rapid,PID control strategy is still the most widely used control strategy in many applications,including AMBs.In order to tune PID controller,a particle swarm optimization(PSO)method is applied.Therefore,a comparative analysis of particle swarm optimization(PSO)algorithms is carried out,where two PSO algorithms,namely(1)PSO with linearly decreasing inertia weight(LDW-PSO),and(2)PSO algorithm with constriction factor approach(CFA-PSO),are independently tested for different PID structures.The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE).In order to validate the performance of the analyzed PSO algorithms,one-axis and two-axis radial rotor/active magnetic bearing systems are examined.The results show that PSO algorithms are effective and easily implemented methods,providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems.Moreover,the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system,which consider the system delay and the interference among the horizontal and vertical rotor axes.  相似文献   

20.
Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields.However,high precision is still one of the challenges when they are used for advanced machine tools.One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations,especially at high speeds and under heavy loads.A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process.Based on the dynamic model constructed by the Newton-Euler method,all the inertia loads and constraint forces of the links are computed and their deformations are derived.Then the kinematic errors of the machine are derived with the consideration of the deformations of the links.Through further derivation,the accuracy of the machine is given in a simple explicit expression,which will be helpful to increase the calculating speed.The accuracy of this machine when following a selected circle path is simulated.The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated.The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine.The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号