首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
自旋电子学和自旋注入   总被引:1,自引:1,他引:0  
自旋电子学是一门新兴的学科,利用它制造的自旋电子器件,与传统的半导体器件相比,有着非易失性,提高数据处理速度,降低能量消耗和增加集成密度等优点,从而给现有的电子业带来革命性的变化,有效的自旋注入是自旋电子学面临的重大挑战之一,文中综述了欧姆式注入,隧道注入,弹道电子注入等几种重要的自旋注入方法以及它们的最新进展。  相似文献   

2.
评述了自旋电子学及自旋电子器件的发展,自旋电子器件的应用,半导体自旋电子学的研究内容及目前的研究现状.给出了我们的有关GaAs中电子自旋偏振与相干弛豫的研究结果.  相似文献   

3.
自旋极化电子的高效注入、自旋霍尔效应和自旋流的产生与探测都是目前自旋电子学中热门研究专题,世界一些著名学术刊物屡见报道。对这些重要内容的理论和实验的最新研究成果进行了介绍。通过自旋极化电子高效注入方法和材料的研究,人们期望研制出新一代自旋电子器件,进而实现应用电子自旋传输、记录和存储信息的目标。近期实验给出,自旋极化电子从铁磁金属注入半导体和金属都获得较高的极化率。各种注入方法中,自旋流直接注入法目前备受关注,因为自旋霍尔效应为自旋流的产生与探测提供了新的途径,即自旋霍尔效应可以产生自旋流,但因无霍尔电压故不容易测量;而逆自旋霍尔效应又将自旋流转化为电流,使得难以测量的自旋流又可以直接用电学方法测量。  相似文献   

4.
自旋电子学研究进展   总被引:2,自引:0,他引:2  
自旋电子学是上世纪 90年代以来飞速发展起来的新兴学科。与传统的半导体电子器件相比 ,自旋电子器件具有非挥发性、低功耗和高集成度等优点。电子学、光学和磁学的融合发展更有望产生出自旋场效应晶体管、自旋发光二极管、自旋共振隧道器件、THz频率光学开关、调制器、编码器、解码器及用于量子计算、量子通信等装置的新型器件 ,从而触发一场信息技术革命。文中介绍了自旋电子学的若干最新研究进展。  相似文献   

5.
自旋电子学是一门最新发展起来的涉及磁学、电子学以及信息学的交叉学科.自旋电子器件与普通半导体电子器件相比具有不挥发、低功耗和高集成度等优点.本文介绍了半导体自旋电子学的研究对象和内容,主要包括磁性半导体、自旋注入、自旋探测以及自旋输运等.本文综述了半导体自旋电子学目前的研究进展及其在自旋电子器件和量子信息处理中的应用.  相似文献   

6.
7.
1988年Fert与Grunberg科研小组彼此独立地在铁/铬多层膜纳米结构中发现了高达50%的磁电阻效应,从此自旋电子学诞生了.目前,自旋电子学已经发展出磁读头、磁电隔高耦合器、磁随机存储器(MRAM)、微波探测器等器件,年产值近1000亿美元.同时,通过与其它学科的结合,半导体自旋电子学、有机自旋电子学等均成为物理研究的前沿.因此,大量中外院士与专家认为自旋电子学及器件很有可能成为世界第四次产业革命的导火索.  相似文献   

8.
自旋电子学的某些物理现象,如交换型磁振子、反铁磁共振、超快自旋动力学等,其特征频率刚好处于太赫兹频段。利用相应的自旋电子学现象和原理,研究人员发现和建立了若干新型的太赫兹波产生方法,为新型太赫兹源的实现和发展提供指导方向。这些新型产生方法有:a)自旋注入产生太赫兹波;b)基于反铁磁共振的太赫兹波产生;c)基于超快自旋动力学的太赫兹波产生。理论及实验结果表明,基于自旋电子学的太赫兹产生方法具有较大的潜力,有望推动太赫兹技术的发展。  相似文献   

9.
90年代将是固体电子学继续繁荣的年代,发现、创新、形成新的规模、开辟新的技术、开拓新的应用等等,将继续是其特点.旧的差距,新的发展,要求我们作出更有效的努力.面临着严重的挑战,我们应该做些什么——能够做些什么呢?  相似文献   

10.
磁电子学研究概述   总被引:1,自引:0,他引:1  
简要介绍了磁电子学的基本概念、研究对象和几种重要效应 ,以及基于这些效应的几种新型器件的工作原理 ,提出了磁电子学研究中的几个前瞻性课题 ,对磁电子学的未来发展方向作了评述和展望  相似文献   

11.
自旋电子学是近年来发展迅速的一个研究领域,利用了传导电子自旋这一自由度的自旋电子器件以其提高数据处理速度、降低能量消耗、容易增加集成密度等优点正引起人们的空前关注.文中阐述了自旋的漂移-扩散方程,并对以Fe/GaAs为代表的铁磁性金属/半导体结构(FM/SC)进行了简单分析.如果选取参数适当,可以在Fe/GaAs结中获得较大的自旋注入效率.  相似文献   

12.
This article addresses the most challenging question facing the organic spintronics community today – what causes the universal loss of Giant Magnetoresistance (GMR) signal in organic spin valve devices made with different spin-polarized electrodes and organic semiconductor spacers? Careful analysis of our own and other experimental results available in literature indicate that transition of transport from polaron tunneling limit (suggested by the variable range hopping model) to thermally activated hopping limit (in the temperature range of 40–58 K) marks the most significant decrease of spin relaxation in organic semiconductors. With increasing occupancy of the available hopping sites by the thermally activated carriers, chances of spin flip inside the organic semiconductors increases significantly causing fast spin relaxation in the spin-valves.  相似文献   

13.
《Organic Electronics》2014,15(1):276-280
Planar organic spin valves were fabricated by evaporating organic semiconductor PTCDI-C13 onto pairs of patterned Ni80Fe20 magnetic nanowires separated by 120 nm. Control over the relative alignment of magnetisation in the nanowires was achieved by including a domain wall ‘nucleation pad’ at the end of one of the wires to ensure a large separation in magnetic switching fields. Switching behaviour was investigated by optical and X-ray magnetic imaging. Room temperature organic magnetoresistance of −0.35% was observed, which is large compared to that achieved in vertical spin valves with similar materials. We attribute the enhanced performance of the planar geometry to the deposition of the semiconductor on top of the metal, which improves the quality of metal–semiconductor interfaces compared to the metal-on-semiconductor interfaces in vertical spin valves.  相似文献   

14.
    
It is theoretically proposed that magnetic skyrmions, nanometric spin vortices characterized by a quantized topological number, can be electrically created on a thin‐film specimen of chiral‐lattice magnetic insulator within a few nanoseconds by applying an electric field via an electrode tip taking advantage of coupling between noncollinear skyrmion spins and electric polarizations. This finding paves the way for utilizing multiferroic skyrmions as information carriers for low‐energy‐consuming magnetic storage devices without Joule‐heating energy losses.  相似文献   

15.
To reduce the photoresist usage and understand the film spreading process, this study performs flow visualization experiments and numerical simulations. This paper is the first work to show that in the early stage of the spin coating process, the spreading of photoresist is mainly governed by the photoresist injection. Then, instability fingers are formed due to the centrifugal forece. Accompanied by the growing of fingers in length, the Coriolis force broadens the width of the fingers. The numerical results agree with the measured liquid front history at very short times. The difference between the numerical results and experiment data gradually arises due to the formation of instability fingers. The critical injection rate for fully coating a wafer increases with decreasing injection volume. Under a fixed wafer rotating speed, increasing the injection rate can significantly reduce the photoresist usage. To assist in the design and operation of the spin coating process, a regime map for injection rate and injection volume is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号