首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δσ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.  相似文献   

2.
A microcrack propagation model was developed to predict thermomechanical fatigue (TMF) life of high-temperature titanium alloy IMI 834 from isothermal data. Pure fatigue damage, which is assumed to evolve independent of time, is correlated using the cyclic J integral. For test temperatures exceeding about 600 °C, oxygen-induced embrittlement of the material ahead of the advancing crack tip is the dominating environmental effect. To model the contribution of this damage mechanism to fatigue crack growth, extensive use of metallographic measurements was made. Comparisons between stress-free annealed samples and fatigued specimens revealed that oxygen uptake is strongly enhanced by cyclic plastic straining. In fatigue tests with a temperature below about 500 °C, the contribution of oxidation was found to be negligible, and the detrimental environmental effect was attributed to the reaction of water vapor with freshly exposed material at the crack tip. Both environmental degradation mechanisms contributed to damage evolution only in out-of-phase TMF tests, and thus, this loading mode is most detrimental. Electron microscopy revealed that cyclic stress-strain response and crack initiation mechanisms are affected by the change from planar dislocation slip to a more wavy type as test temperature is increased. The predictive capabilities of the model are shown to result from the close correlation with the microstructural observations.  相似文献   

3.
4.
To establish correlations between microstructure and mechanical properties for the Till alloy, twelve different combinations of hot die forging and heat treatment, in the α+β and β phase regions, were investigated. The resulting heat treated forgings were classified into four distinct categories based on their microstructural appearance. The room temperature tensile, post-creep tensile, fracture toughness and fatigue crack propagation properties were measured along with creep and low cycle fatigue at 566°C. The creep, tensile, fatigue crack propagation and fracture toughness properties, grouped in a manner similar to the microstructural categories. The fracture appearance and behavior of the cracks during propagation in fatigue and in fracture toughness tests were examined, and correlations with the microstructure discussed. In the case of the fully transformed acicular microstructure, it was found that the size and the orientation of colonies of similarly aligned α needles are dominant factors in the crack behavior.  相似文献   

5.
The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of −1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, we observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than ∼ 25 to 28 μm, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than ∼ 25 to 28 μm, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.  相似文献   

6.
To establish correlations between microstructure and mechanical properties for the Ti-ll alloy, twelve different combinations of hot die forging and heat treatment, in the a + 8 and Β phase regions, were investigated. The resulting heat treated forgings were classified into four distinct categories based on their microstructural appearance. The room temperature tensile, post-creep tensile, fracture toughness and fatigue crack propagation properties were measured along with creep and low cycle fatigue at 566‡C. The creep, tensile, fatigue crack propagation and fracture toughness properties, grouped in a manner similar to the microstructural categories. The fracture appearance and behavior of the cracks during propagation in fatigue and in fracture toughness tests were examined, and correlations with the microstructure discussed. In the case of the fully transformed acicular microstructure, it was found that the size and the orientation of colonies of similarly aligned α needles are dominant factors in the crack behavior. Formerly a National Research Council Associate, Air Force Materials Laboratory Formerly with AFML  相似文献   

7.
The nickel-base alloys IN 617 and HAYNES 230 for welded high-temperature components have been subjected to thermal fatigue (TF) loading. In a series of TF tests in air, single wedge specimens were induction heated and compressed-air cooled at the leading edge for various temperature cycles between 200 °C and either 850 °C, 950 °C, or 1050 °C. The test rigs permitted simultaneous measurements of temperature and total strain along the edge of specimen during TF cycling. Both materials have been tested in conditions relevant for hot path components in the gas turbines, e.g., “as delivered,” “welded,” and “welded + notched”. Under identical temperature cycles and thermal gradients, HAYNES 230 showed a higher TF strength than IN 617 in the as-delivered condition. It is suggested that this advantage of HAYNES 230 is primarily related to its lower value of the relevant combination of properties of this alloy: coefficient of thermal expansion, thermal conductivity, elastic modulus, ultimate tensile strength, taken at maximal operating temperature. In addition, the advantage of the HAYNES 230 is described by a lower plastic strain, which is induced at the wedge region during TF loading. Moreover, microstructural details of crack initiation, crack propagation, and reactions with the gaseous environment play an important role. Both alloys investigated in the present work showed plastic deformation with a maximum in the central zone of the wedge tip. In this zone, slip bands and grain distortion occurred, whereas both ends of the wedge tip free of visible plastic deformation. The TF cycles led to multiple transgranular crack initiation and propagation. In welded specimens of IN 617 and HAYNES 230, cracks appeared first in the center of the weld. The susceptibility of welds to TF cracking depends considerably on the weld filler and the surface quality. It was shown for HAYNES 230 that a mismatched weld could reduce the TF life to less than 50 pct of non-welded specimens. The lower TF-fatigue strength of the welded specimens can be explained by the difficulty of the cast alloy in the welded zone to accommodate the repeated thermal shocks by plastic deformation. Notches introduced in the heat-affected zone (depth about 0.1 mm) reduced the TF life of both alloys by a factor as high as 4. The thermal fatigue strength of the welded material can almost reach the values of the base alloy provided the use of matching electrodes, post-weld heat treatment, and grinding off the weld beads is carefully executed.  相似文献   

8.
This work examined the influence of microstructure on the surface fatigue crack propagation behavior of pearlitic steels. In addition to endurance limit or S(stress amplitude)-N(life) tests, measurements of crack initiation and growth rates of surface cracks were conducted on hourglass specimens at 10 Hz and with aR ratio of 0.1. The microstructures of the two steels used in this work were characterized as to prior austenite grain size and pearlite spacing. The endurance tests showed that the fatigue strength was inversely proportional to yield strength. In crack growth, cracks favorably oriented to the load axis were nucleated (stage I) with a crack length of about one grain diameter. Those cracks grew at low ΔK values, with a relatively high propagation rate which decreased as the crack became longer. After passing a minimum, the crack growth rate increased again as cracks entered stage II. Many of the cracks stopped growing in the transition stage between stages I and II. Microstructure influenced crack propagation rate; the rate was faster for microstructures with coarse lamellar spacing than for microstructures with fine lamellar spacing, although changing the prior austenite grain size from 30 to 130 jμm had no significant influence on crack growth rate. The best combination of resistance to crack initiation and growth of short cracks was exhibited by microstructures with both a fine prior austenite grain size and a fine lamellar spacing. Formerly with Carnegie Mellon University  相似文献   

9.
Wearandshellingaretwoimportantformsofdamageforrailsteelssothatmanyresearchesareaimingatthem[1~4].Manyoftheseresearcheswerelimitedtodeterminingthewearandtosurveyingthetopographyofthesamplesurfacesandonlyafewoftheminvestigatedthemicrostructures,themorphol…  相似文献   

10.
Fatigue crack propagation in high-strength A286 steel was studied by comparing crack growth rates determined from: (1) conventional long-crack propagation tests, (2) closure-free long-crack tests at constant Kmax, and (3) small-crack propagation tests. Small-crack growth rates were measured by following the growth of surface cracks in samples cycled from near-zero stress to 0.5 or 0.8σy. While most of the surface cracks became dormant shortly after nucleation, some grew into long cracks, and some of these propagated at cyclic stress intensities below the long-crack threshold, ΔKth (or ΔK th eff , the threshold cyclic stress intensity after crack closure effects have been removed). Surface cracks grew more rapidly than long cracks at the same ΔKor ΔKeff. The small-crack effect disappeared when the crack-tip plastic zone size became greater than the grain size. The results show that the absence of crack closure is only one of several factors that influence short-crack growth in A286 steel. Both peak stress and microstructural effects are important. Microstructural effects are apparently responsible for subthreshold crack growth; the cracks that grow at ΔK < ΔK th eff form and grow in statistically weak regions of the microstructure.  相似文献   

11.
Fatigue test bars fabricated from an SA508 class 3 low-carbon steel plate were cyclically deformed at 300 °C (constant low-cycle fatigue, total strain range Δε = 0.78 pct and 0.48 pct) to crack initiation (100 pct cumulative damage, CD) and to the factors 75, 50, and 25 pct CD. The test bars were cut perpendicular to the stress axis at the center of the gage length. The X-ray diffraction line-broadening (XRD) was performed on the cross sections created by the cuts. Thin foils (∼0.1-μm thick) were prepared from each cross section and used for the transmission electron microscope (TEM) and selected area diffraction (SAD) study. The half-value line breadth change measured by the XRD increased with the CD increase up to 50 pct, beyond which a significant reduction was observed for the 75 and 100 pct CD sample regardless of the incident X-ray beam angle. By the TEM, the undamaged material (0 pct CD) was characterized by high-angle boundaries, small carbide precipitates, and dislocation cell networks in grains. These characteristics did not show any appreciable changes in all of the samples with fatigue damage of the respective levels. Micro-orientation changes of the dislocation cells studied by the SAD of the foils and a statistical data analysis clearly demonstrated that the mean orientation difference in the cells and its standard deviation increased gradually as the CD increased.  相似文献   

12.
Very high cycle fatigue behavior(107-109 cycles)of 304 Laustenitic stainless steel was studied with ultrasonic fatigue testing system(20kHz).The characteristics of fatigue crack initiation and propagation were discussed based on the observation of surface plastic deformation and heat dissipation.It was found that micro-plasticity(slip markings)could be observed on the specimen surface even at very low stress amplitudes.The persistent slip markings increased clearly along with a remarkable process of heat dissipation just before the fatigue failure.By detailed investigation using a scanning electron microscope and an infrared camera,slip markings appeared at the large grains where the fatigue crack initiation site was located.The surface temperature around the fatigue crack tip and the slip markings close to the fracture surface increased prominently with the propagation of fatigue crack.Finally,the coupling relationship among the fatigue crack propagation,appearance of surface slip markings and heat dissipation was analyzed for a better understanding of ultrasonic fatigue damage behavior.  相似文献   

13.
The high cycle fatigue (HCF) and cyclic crack growth rate (CCGR) properties of the dispersion strengthened ODS-alloy MA 6000 were investigated with smooth bars and with fracture mechanics samples at 850 °C. The material was very coarse grained with the grains elongated in the rolling direction. Fatigue crack initiation and crack propagation were studied parallel and perpendicular to the rolling direction and a pronounced influence of orientation was found. The fatigue limit of sam-ples cut parallel to the grain elongation direction (p-samples) was almost a factor of 2 higher than the one of samples cut transverse to the elongation direction (t-samples). Inclusions were found to be responsible for crack initiation. For p-samples a reasonable agreement between particle size, fatigue limit, and crack growth behavior was found. For t-type samples such an agreement also exists provided differences in the crack growth behavior of short cracks and long cracks are taken into consideration. The low fatigue strength of t-samples could be linked with low Young's modulus in this direction. The crack propagation rate of long cracks is lower in t-samples than in p-samples due to crack branching along the grain boundaries. HCF-strength of MA 6000 is high compared to conventional cast alloys mainly because of reduced size of crack nucleation sites and higher fatigue threshold stress intensity range ΔKth, as a result of higher Young's modulus.  相似文献   

14.
An experimental investigation was undertaken to study the relationship between mechanical properties and low stress fatigue crack propagation. Attention was focused on the “fatigue” or “reversed plastic zone” at the crack tip, since it was felt that material properties in this region were of prime importance in the crack propagation process. An effort was made to simulate this region through fully reversed strain-cycling tests on tensile specimens. Mechanical properties obtained from a number of materials before and after strain cycling were correlated with crack propagation data from the same materials. Evidence indicated that while monotonic tensile properties are inadequate for correlation purposes, the cyclic strain-hardening coefficient, the cyclic yield strength, and the elastic modulus appear to be important parameters. This was felt to be an indication of the importance of strain cycling in the reversed plastic zone in influencing the rate-governing mechanisms in fatigue crack growth. Formerly Research Assistant, Department of Metallurgy and Materials Science, Lehigh University, Bethlehem, Pa.  相似文献   

15.
Fatigue tests were performed on specimens containing weld heat affected zones at two orientations to the stress axis. Two heat affected zones were studied, one in Ducol W30 (a low alloy steel) and the other in mild steel. Under conditions of constant alternating and maximum stress intensity a fatigue crack only propagated at a uniform rate when it was remote from the heat affected zone. A heat affected zone which was harder than either the parent plate or weld metal was found to reduce crack propagation rates by a factor of up to 2 by restricting the plastic zone size around the crack tip. The changes in crack propagation rate could not be related uniquely to the conditions of the material immediately adjacent to the crack tip. Furthermore, the shape of the plastic zone was found to influence the direction of the propagation of a fatigue crack which always deviated toward regions of lower flow stress. A crack was never found to follow the interface between the weld metal and the parent metal heat affected zone because the flow stresses were not the same on either side of the interface. There was no difference in crack propagation mechanism between the parent plate and its heat affected zone for the stress conditions imposed. Formerly with Central Electricity Research Laboratories, Materials Division, Leatherhead, Surrey, England  相似文献   

16.
 Energy-based models for predicting the low-cycle fatigue life of high-strength structural steels are presented. The models are based on energy dissipation during average of cycles, cycles to crack propagation and total cycles to failure. Plastic strain energy per cycle was determined and found as an important characteristic for initiation and propagation of fatigue cracks for high-strength structural steels. Fatigue strain-life curves were generated using plastic energy dissipation per cycle (loop area) and compared with the Coffin-Manson relation. Low cycle fatigue life was found similar from both methods. The material showed Masing-type behavior. The cyclic hysterisis energy per cycle was calculated from cyclic stress-strain parameters. The fracture surfaces of the fatigue samples were characterized by scanning electron microscope and the fracture mechanisms were discussed.  相似文献   

17.
This article reports research on the initiation and growth of small fatigue cracks in a nickel-base superalloy (produced commercially by INCO as INCOLOY* 908) at 298 and 77 K. The experimental samples were square-bar specimens with polished surfaces, loaded in fourpoint bending. The crack initiation sites, crack growth rates, and microstructural crack paths were determined, as was the large-crack growth behavior, both at constant load ratio (R) and at constant maximum stress intensity (K max). Small surface cracks initiated predominantly at (Nb,Ti)xCy, inclusion particles, and, less frequently, at grain boundaries. Small cracks grew predominantly along {111} planes in individual grains and were perturbed or arrested at grain boundaries. For values of ΔK above the large-crack threshold, ΔK th, the average rate of smallcrack growth was reasonably close to that of large cracks tested under closure-free conditions. However, short-crack growth rates varied widely, reflecting the local heterogeneity of the microstructure. The threshold cyclic stress (Δσth) and the threshold cyclic stress intensity (ΔKσth) for small surface cracks were measured as functions of the crack size, 2c. The results suggest that a combination of the fatigue endurance limit and the threshold stress intensity for closure-free growth of large cracks can be used to define a fatigue-safe load regime. formerly with Lawrence Berkeley Laboratory  相似文献   

18.
This contribution deals with the initiation and growth of short fatigue cracks in cyclic loaded notched specimens made of the 0.15 wt% carbon steel SAE1017. On the basis of experimentally determined data, a damage model based on cyclic crack growth has been developed, which accounts for the anomalous behaviour of short fatigue cracks. In this model the initiation and propagation of a critical crack is regarded as damage. This approach allows to calculate fatigue life for constant amplitude tests as well as for multilevel tests and irregular loading. Deviations from Miner's rule, which have been often observed for two‐level tests, are attributed to the varying fraction of crack initiation and propagation phase for different loads. The inaccuracy of Miner's rule deduced from two‐level tests is of secondary importance for service life calculation when compared with the negligence of amplitudes below the fatigue limit. The proposed model yields shorter service life than the elemental version of Miner's rule.  相似文献   

19.
Fatigue failure in metals and alloys occurs by the nucleation and controlled propagation of a surface crack. At ambient temperature propagation is transgranular and is controlled, to a large extent, by continuum plasticity effects at the crack tip. At elevated temperatures this simple process might be affected by oxidation and the tendency towards intergranular propagation. The elevated temperature fatigue crack propagation behavior of a 20/25/Nb stainless steel and a type 316 stainless steel is studied by optical measurement of the crack growth rate of artificially-induced notches under conditions where gross plastic straining is present in the bulk of the material. Tests conducted at ambient temperature are included for comparison with elevated temperature behavior. By reference to fatigue life data for smooth unnotched specimens, tested under identical conditions to the crack growth tests, an attempt is made to rationalize the roles of crack initiation and propagation in the fatigue process and indicate the relevance of crack growth data in predicting fatigue life data.  相似文献   

20.
Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号