首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 171 毫秒
1.
田书  尚鹏辉  寿好俊 《测控技术》2016,35(11):36-39
正确辨识和检测故障行波信号是实现电缆故障行波定位的关键.为了解决传统EMD方法频带混叠问题,提出了一种基于集合经验模态分解(EEMD)的电缆双端行波测距方法,通过EEMD提取双端故障行波线模分量的固有模态函数,利用基于瞬时频率突变和模极大值的奇异性检测原理进行行波波头的准确标定,实现故障点定位.利用PSCAD/EMTDC(电力系统CAD/电力系统仿真分析软件)软件搭建基于频变特性电缆线路的10 kV配网模型.大量的仿真结果验证了该方法可行,测距精度高.  相似文献   

2.
《工矿自动化》2016,(11):50-55
为了解决采用传统经验模态分解的电缆故障测距方法存在的频带混叠问题,以及基于总体平均经验模态分解的电缆故障测距方法受残留白噪声影响等问题,提出了一种基于补充总体平均经验模态分解的井下配电网电缆故障在线双端行波测距方法。该方法通过补充总体平均经验模态分解提取双端故障行波线模分量的固有模态函数,利用基于瞬时频率突变和模极大值的奇异性检测原理进行行波波头标定,从而实现故障点定位。通过在PSCAD/EMTDC环境下搭建基于频变特性电缆线路的6kV井下配电网模型并进行仿真,验证了该方法测距精度高,最大测距误差不超过4%。  相似文献   

3.
在噪声干扰下有效提取振动信号所包含的微弱故障特征,是轴承故障诊断的关键问题,提出了一种基于敏感奇异值分解(SSVD)和总体平均经验模态分解(EEMD)的故障诊断方法.对时域振动信号进行敏感SVD分析,通过敏感因子选择反映故障冲击特征的敏感SVD分量,并利用定位因子定位分量信号所对应奇异值进行振动信号重构,以滤除噪声干扰;对降噪信号进行EEMD,根据峭度准则选取故障信息丰富的敏感固有模态分量(IMF),有效提取局部微弱故障信息;利用Teager-Kaiser能量算子(TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,以识别故障类型.方法应用于轴承故障诊断,实验证明了所提方法的有效性.  相似文献   

4.
针对经验模态分解(Empirical mode decomposition, EMD)系列方法存在的模态分裂(Mode splitting, MS)问题, 提出中值互补集合经验模态分解(Median complementary ensemble EMD, MCEEMD)算法. 通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD, CEEMD)的MS问题, 证明了使用中值算子替代算术平均算子对抑制MS的有效性. 为了兼具抑制MS和残留噪声的性能, MCEEMD算法首次在集合过程中结合了中值和平均算子. 具体地, 所提方法首先添加N对互补的白噪声至原信号中, 并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions, IMFs), 然后分别对其中互补相关的IMFs两两取平均得到N组IMFs, 最后使用中值算子处理上述N组IMFs得到输出结果. 对仿真信号与两个真实案例的分析结果表明, 本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题, 而且避免了单一使用中值算子的两个缺点: 分解完备性差和IMFs中存在的毛刺现象.  相似文献   

5.
为有效识别城镇取用水监测数据异常值,提高数据的可靠性与真实性,结合局部异常因子(LOF)算法与互补集成经验模态分解(CEEMD)法,开发城镇取用水监测数据异常值自动识别的方法.先应用LOF进行可直观异常值识别,再应用CEEMD对修正后的数据序列进行频谱分解,通过低频叠加分量拟合序列并设定相对误差阈值用以识别不可直观异常...  相似文献   

6.
建筑能耗数据具有非平稳和非线性特征,单一预测模型很难对其进行精准预测,提出一种用于建筑能耗短期预测的新型混合模型。利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数对鲸鱼优化算法(WOA)进行改进,有效解决算法早熟收敛与陷入局部最优等问题,提出改进算法UWOA(upgraded whale optimization algorithm);利用UWOA优化Elman神经网络的权值与阈值,优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成,得到能耗预测值。应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测,结果显示混合模型获得很好的预测效果。  相似文献   

7.
提出了一种基于EEMD域统计模型的话音激活检测算法。算法首先利用总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)对带噪语音进行分解,得到信号的本征模式函数(Intrinsicmode function,IMF)分量,选择与原信号的相关性最高的两个分量相加组成主分量;然后对主分量进行频域分解,引入统计模型,求出EEMD域特征参数;最后利用噪声与语音的EEMD域特征参数的不同来进行语音激活检测。实验结果表明,在不同信噪比情况下,本文算法性能优于目前常用的VAD算法,特别在噪声强度大时体现出明显的优势。  相似文献   

8.
该文针对轴承故障诊断中信号处理的端点效应问题,提出基于极值波延拓与窗函数的改进集合经验模态分解EEMD方法。首先对原始信号进行极值波延拓,其次对延拓后的信号加入组合窗体,最后对信号进行EEMD分解,通过仿真验证改进EEMD方法的有效性。同时,进一步结合Hilbert变换建立了改进EEMD-Hilbert的轴承故障诊断模型,利用轴承故障的实测信号证明了该模型在提高轴承故障诊断效率方面有一定优势。  相似文献   

9.
利用电路网络理论和传输线理论构建ZPW-2000A轨道电路传输模型,仿真并分析了补偿电容故障对轨面电压的影响,提出基于互补的总体经验模式分解(CEEMD)特征提取的补偿电容故障诊断方法;实验结果表明,相比于传统经验模式分解(EMD)和总体经验模式分解(EEMD),基于CEEMD特征提取的补偿电容故障诊断方法可以有效地克服EMD方法引起的模态混叠和能量泄露现象,减少EEMD方法在信号重构过程中的白噪声残留,为补偿电容的故障诊断提供了一种快速准确的方法,为保证信号传输质量提供了参考依据。  相似文献   

10.
总体经验模态分解(EEMD)方法在EMD的基础上消除了模态混叠的现象,从而更能准确地揭露出信号特征信息。根据声发射信号的非稳态、非线性的特点,提出一种基于EEMD应用于刀具磨损状态识别的方法。通过EEMD获取无模态混叠的IMF分量;通过敏感度评估算法从所有IMF分量中提取敏感的IMF;提取敏感IMF的能量作为支持向量机(SVM)分类器的输入,将刀具分成正常切削、中期磨损和严重磨损3种状态。通过比较EEMD与应用EMD等方法的分类准确率,确立了基于EEMD的方法在提取刀具磨损状态特征信息的优势。  相似文献   

11.
针对轮式和履带式车辆微动信号的差异对目标车辆进行了识别分类,利用集合经验模式分解(EEMD)将原始信号分解为多个本征模函数(IMF),通过相关性分析,验证了EEMD能够有效克服EMD所带来的模态混叠问题.在此基础上,提取了4种特征,采用最近邻方法进行分类.实验结果表明:经EEMD所提取的特征是有效的,对目标速度,以及方位角的变化具有相当的稳健性.  相似文献   

12.
针对煤矿井下现场电磁干扰多,采用煤岩受载产生的电磁辐射(EME)预测煤岩动力灾害效果有待提高,提出一种新的结合自适应集合经验模态分解(AEEMD)和改进小波变换(IWT)的电磁辐射信号去噪算法,克服了模态混叠,弥补了对小波基存在选择性的不足.分别采用IWT、EMD—IWT及AEEMD—IWT对构造的带噪信号进行去噪仿真及试验测试研究,结果表明:AEEMD—IWT算法去噪性能优越,对高信噪比和低信噪比的电磁辐射信号均能有效去噪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号