首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对采煤机滚筒容易截割到岩石等情况,造成采煤机部件损坏、增加煤中矸石含量等问题,提出了一种基于改进蚁群算法的滚筒截割轨迹规划方法.通过分析普氏系数与电流、牵引速度等参数之间的数学关系模型,根据其参数对工作面信息进行描述,采用栅格建模法构建栅格工作面模型;对蚁群算法的信息素更新机制进行了改进,利用改进后的算法在虚拟栅格工作面中对滚筒截割轨迹进行规划,并采用三次B样条对其规划得出的最优或次优截割轨迹离散点进行拟合,从而得到一条平滑的滚筒截割轨迹.仿真结果表明,在复杂地质条件下,改进算法能较好地对截割轨迹进行规划,有效避免滚筒从任意起点截割到岩石等情况,三次B样条能很好地进行曲线拟合,拟合后的截割轨迹更加平滑,有利于引导采煤机滚筒自动截割.  相似文献   

2.
一种改进的机器人路径规划蚁群算法   总被引:4,自引:0,他引:4  
描述了一种静态环境下机器人路径规划的改进蚁群算法.该算法使用栅格法对机器人的工作空间进行建模.通过模拟蚂蚁的觅食行为,使蚂蚁在起始点和目标点之间采用折返的方式完成最优路径的搜索,增强了蚂蚁搜索的多样性;搜索过程采用“惯性原则”和最大信息素搜索策略,使蚂蚁对最优路径更为敏感;同时,根据信息素在栅格模型中散播的特点,提出一种新的信息素更新策略和散播方式,加快解的收敛速度.仿真结果验证了该算法的有效性,即使在障碍物复杂的地理环境,用本算法也能迅速规划出最优路径.  相似文献   

3.
为了解决蚁群算法易陷入局部最优及收敛速度慢等问题,研究提出一种改进的蚁群算法,通过改变方向因子的计算方式来减少寻优所需时间;通过改变信息素的更新方式避免陷入局部最优解。在栅格地图中进行仿真模拟实验,综合结果表明,改进算法与传统蚁群算法及其他相关算法相比,具有得到路径更短、收敛速度更快且路径拐点更少等优点。  相似文献   

4.
用栅格模型表示工作环境,确定机器人运动起始结点和目标结点后,对工作环境进行分析,选取起始点与目标点之间连线附近的若干栅格,以被选取栅格为关键点,采用蚁群算法分别计算关键点与起始点和目标节点之间的最短路径,求取全局最短路径。仿真验证,该方法简单有效。  相似文献   

5.
针对蚁群算法在机器人路径规划过程中出现的收敛速度慢的缺陷,提出了基于改进蚁群算法规划机器人全局路径,在栅格地图中划定优选区域,并建立新的初始信息素浓度设置模型,对各点初始信息素浓度进行差异化设置,避免寻优的盲目性,提高了算法的收敛速度。实验结果表明,改进后的蚁群算法的收敛速度明显加快,优于传统算法,表明了该算法的有效性。  相似文献   

6.
基于蚁群算法的机器人路径规划   总被引:16,自引:2,他引:16  
移动机器人路径规划是机器人学的一个重要研究领域,栅格法模型是其中一类实时性很强的路径规划模型。该文引入蚁群算法的思想,以点离目标点距离、该点的访问次数和移动方向信息素为启发式因子,建立了一种新型的优化算法。新算法不仅能够较好地对已有算例进行求解,而且对于随机设计的新例子求解效果良好。  相似文献   

7.
一种改进的机器人路径规划的蚁群算法   总被引:1,自引:0,他引:1  
针对具有复杂回旋地形结构的机器人路径规划问题, 提出了一种改进的蚁群算法. 该算法引入自适应迁移概率函数实现蚁群具有正、反向运动的能力, 改善了算法的曲折迂回能力; 能见度信息中引入距离启发因素和障碍相交检测机制, 完成路径搜索与避障过程有机结合, 提高算法的搜索效率; 引入贪婪信息素更新策略和节点信息素分布, 降低了数据存储量, 改善了路径规划的效果和算法的收敛速度. 基于不同算法的比较仿真实验, 数值结果证实了该算法的有效性.  相似文献   

8.
根据传统蚁群算法在机器人的路线规划中具有收敛速度慢、容易陷入局部最优解的缺陷,提供了一个经过改进的蚁群算法。使用栅格法建立路径矩阵,建立一种转角启发函数,增加选择指定路径的概率,提高算法的搜索速度;将A*算法与改进蚁群算法结合,提出一种改进的距离启发函数,避免了陷入局部最优解;并提出一种可根据迭代次数而改变的信息素挥发因子,增强了全域搜寻能力。根据相关数据分析,与Ant Colony Algorithm with Multiple Inspired Factor(ACAM)算法相比,改进的蚁群算法对于解决算法收敛速度慢、防止进入局部最优解等方面效果更好。  相似文献   

9.
提出了一种静态环境下机器人路径规划的改进蚁群算法.该算法使用栅格法对机器人的工作空间进行建模,通过模拟蚂蚁的觅食行为,采用折返的迭代方式对目标进行搜索;在搜索过程中,以移动方向一定范围内最大信息素和目标引导函数作为启发式因子;此外,根据蚁群算法处理本问题时信息素散播的特点,重构了信息素的更新策略和散播方式.仿真试验结果表明,改进措施使最优路径的寻找快速而高效,即使在障碍物非常复杂的环境下,算法也能迅速地规划出一条最优路径.  相似文献   

10.
基于改进蚁群算法的机器人路径规划   总被引:1,自引:0,他引:1  
本文主要结合蚁群算法对机器人路径规划进行了系统的研究。针对蚂蚁在搜索路径过程中落入障碍物陷阱而造成算法停滞的现象,提出了蚂蚁系统回退策略。为了检验改进型算法的性能,基于MATLAB软件设计了仿真程序。仿真结果表明:对基本蚁群算法的改进,提高了算法的有效性和鲁棒性,增强了蚁群算法在机器人路径规划中的适应能力。  相似文献   

11.
提出了一种复杂静态环境下的移动机器人避碰路径规划的改进蚁群算法,基于栅格法的工作空间模型,模拟蚂蚁的觅食行为;针对路径规划的需要,搜索过程采用了蚂蚁回退策略、目标吸引策略、参数自适应调整和路径优化策略;利用蚂蚁回退策略和惩罚函数使得蚂蚁能够顺利跳出陷阱,并且在下一次搜索中不再选择此路径,从而避免了遇到陷阱时形成的路径死锁情况,同时也提高了最优路径的搜索效率;仿真试验结果表明,该算法能迅速规划出最优路径。  相似文献   

12.
基于改进蚁群算法的移动机器人路径规划   总被引:8,自引:0,他引:8  
李果  刘少军 《控制工程》2005,12(5):473-475,485
针对移动机器人规避障碍和寻找最优路径问题,提出一种基于改进的蚁群算法的解决策略,并编制相应程序进行验证。仿真过程分为两个基本阶段:适应阶段和协同工作阶段。在前阶段,各局部解根据规则不断调整自身结构;后阶段各局部解通过信息交流,产生全局最优解。与传统的算法比较,它可以避免陷入过早收敛,能实现移动机器人在较短时间内找到最佳路径并规避障碍。  相似文献   

13.
面向机器人全局路径规划的改进蚁群算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对基本蚁群算法在机器人路径规划过程中路径转弯角度过大、易陷入局部极小值、收敛速度慢等问题,对其进行改进。在分析机器人路径规划环境建模方法基础上,将转角启发函数引入至节点选择概率公式,以增强路径选择指向性,提高算法搜索速度;通过引入当前节点与下一节点之间的距离和下一节点与目标节点距离之和的二次方对启发函数进行改进,使得算法搜索过程更有针对性,并降低陷入局部极小值概率;提出信息素挥发因子自适应更新策略,扩大算法搜索范围,提高收敛速度;利用遗传算法的交叉操作对移动路径进行二次优化,以增强算法的寻优能力,进而以Floyd算法为基础引入路径平滑操作,减少移动路径节点。在MATLAB中与其他算法通过求解多个单模测试函数与多模测试函数进行对比,并在栅格法环境建模中进行机器人全局路径规划仿真对比实验,以验证改进算法在路径寻优速度和质量上更具优越性。仿真结果表明,改进后的蚁群算法具有一定的可行性和有效性。  相似文献   

14.
针对移动机器人提出了基于改进蚁群算法的平滑路径规划方法。为了克服蚁群算 法解决路径规划问题时存在的收敛速度慢的缺点,对启发因子的矩阵初始值及更新方式进行了 改进,启发因子改进后的结果与之前相比,平均路径长度减少了 17.6%,平均收敛代数减少了 93.1%;对于栅格环境下存在障碍物时机器人累计转弯角度大的问题,提出了控制点转移策略, 在上一步改进的基础上,通过对控制路径走向的栅格中心点向栅格角顶点的转移,实现了路径 规划的平滑改进。路径规划仿真结果表明,与平滑改进前相比,平滑改进后机器人的平均路径 长度减少了 4.28%,累计转弯角度减少了 52.58%。  相似文献   

15.
针对传统蚁群算法在路径规划中存在收敛速度和寻优能力不平衡,算法易陷入局部最优等问题,提出一种自适应改进蚁群算法。为了提高算法收敛速度,在栅格环境下,根据最优路径的特点以及实际环境地图的基本参数,对初始信息素进行差异化分配;为了提高蚂蚁搜索效率,在状态转移概率中引入转角启发信息并对路径启发信息进行改进;重新制定信息素更新策略,设定迭代阈值,调整信息素挥发系数和信息素浓度,使算法在迭代后期依然具有较强的搜索最优解能力;采用分段三阶贝塞尔曲线对最优路径进行平滑处理以满足机器人实际运动要求。通过实验仿真与其他算法进行对比分析,验证了改进算法的可行性、有效性和优越性。  相似文献   

16.
针对机器人在静态环境下全局路径规划存在无法找到最短路径,收敛速度慢,路径搜索盲目性大,拐点多等问题,提出一种改进双向蚁群算法.以栅格地图为机器人运行环境,对障碍物有效顶点进行定义、编码和运用,同时结合以相同障碍物有效顶点为相遇条件的双向蚁群算法,双向交替进行路径搜索,能够快速地找到更短路径,得到的路径拐点更少.引入改进...  相似文献   

17.
为优化机器人末端执行器的工作轨迹,提高工作效率,减少能量损耗,建立了以运动时间和路径最短、冲击最小为目标的优化模型。在传统蚁群算法的基础上,引入带方向信息的全局启发因子来提高最优路径的搜索效率,并利用蚂蚁的死亡机制和惩罚函数来避免遇到陷阱时形成的路径死锁情况。测试结果表明,改进后的蚁群算法收敛速度更快,能够在较短时间内规划出满足条件的最优路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号