首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton fleece has become a popular fashion in recent years. However, most of the 100% cotton fleece fabric is not able to meet the federal flammability standard (‘16 CFR Part 1610: Standard for the Flammability of Clothing Textiles’) without chemical treatment. In this research, we investigated the use of the combination of a hydroxy‐functional organophosphorus oligomer (HFPO) as the flame‐retarding agent and dimethyloldihydroxylethyleneurea (DMDHEU) as the binder to reduce the flammability of cotton fleece. We found that HFPO is effective in reducing the flammability of the cotton fleece whereas DMDHEU enhances the effectiveness of HFPO due to phosphorus–nitrogen synergism. The flammability as well as other properties of the treated cotton fleece is affected by both the concentration of HFPO and that of DMDHEU. The cotton fleece treated with HFPO/DMDHEU passes the federal flammability standard and shows high strength retention with little change in fabric whiteness and hand. We also found that the flame‐retardant finishing system is durable to multiple home launderings. The combination of HFPO and DMDHEU has the potential to become a practical flame‐retardant finishing system to reduce the flammability of cotton fleeces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A novel halogen‐free and formaldehyde‐free flame retardant (FR), which contains phosphorus, nitrogen, and silicon, was synthesized for cotton fabrics considering the synergistic effect of phosphorus, nitrogen, and silicon. The structure of the new FR was characterized by Fourier‐trans‐form infrared spectroscopy, and the surface morphology of the treated fibre was observed using scanning electron microscope. The thermal property of the FR treated cotton fabric was studied through thermal gravimetric analysis. The TG results indicate that the FR can protect cotton fabric from fire to a certain degree. The vertical flammability test and limiting oxygen index results further indicate that the FR has excellent FR properties. Finally, the durability and other performance properties of the treated fabric were studied and the results show that the new materials can be used as a semi‐durable FR for cellulosic fibres. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Blend fabrics of cotton and polyester are widely used in apparel, but high flammability becomes a major obstacle for applications of those fabrics in fire protective clothing. The objective of this research was to investigate the flame retardant finishing of a 50/50 polyester/cotton blend fabric. It was discovered previously that N,N′‐dimethyloldihydroxyethyleneurea (DMDHEU) was able to bond a hydroxy‐functional organophosphorus oligomer (HFPO) onto 50/50 nylon/cotton blend fabrics. In this research, the HFPO/DMDHEU system was applied to a 50/50 polyester/cotton twill fabric. The polyester/cotton fabric treated with 36% HFPO and 10% DMDHEU achieved char length of 165 mm after 20 laundering cycles. The laundering durability of the treated fabric was attributed to the formation of polymeric cross‐linked networks. The HFPO/DMDHEU system significantly reduced peak heat release rate (PHRR) of cotton on the treated polyester/cotton blend fabric, but its effects on polyester were marginal. HFPO/DMDHEU reduced PHRR of both nylon and cotton on the treated nylon/cotton fabric. It was also discovered that the nitrogen of DMDHEU was synergistic to enhance the flame retardant performance of HFPO on the polyester/cotton fabric.  相似文献   

4.
In previous research, it was found that melamine‐formaldehyde resin can be used as a binder for a hydroxy‐functional organophosphorus flame retarding agent (FR) on cotton. The role that trimethylol melamine (TMM) plays in this flame retarding system was studied. When TMM is applied to cotton, it forms crosslinks between cellulose molecules. When TMM is applied to cotton in the presence of FR, it reacts with FR to form a crosslinked polymeric network in addition to reacting with cotton. The formation of the crosslinked network improves the laundering durability of FR and also increases the fabric stiffness. The number of crosslinks among cotton cellulose formed by TMM decreases as the FR concentration in the system is increased. TMM also functions as a nitrogen provider to enhance the flame retarding performance of FR due to phosphorus–nitrogen synergism. Therefore, the amount of TMM used in a FR/TMM formula plays the most critical role in determining the effectiveness of this flame retarding system. The finish bath pH also plays a significant role in influencing the performance of the flame retarding system on cotton. The optimum pH was found to be around 4. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Multifunctional carboxylic acids, such as 1,2,3,4‐butanetetracarboxylic acid (BTCA), have been used as crosslinking agents for cotton cellulose to produce wrinkle‐resistant cotton fabrics and garments. Polycarboxylic acids were used to bond hydroxy‐functional organophosphorus oligomer to cotton, thus imparting durable flame retarding properties to the cotton fabric. This research investigated the chemical reactions between the hydroxy‐functional organophosphorus compound and BTCA on cotton. BTCA crosslinks cotton cellulose through the formation of a 5‐membered cyclic anhydride intermediate and esterification of the anhydride with cellulose. In the presence of the organophosphorus compound, BTCA reacts with both the organophosphorus compound and cellulose, thus functioning as a binder between cotton cellulose and the organophosphorus compound and making the flame retarding system durable to laundering. The cotton fabric treated by the combination of the organophosphorus compound and BTCA demonstrated lower wrinkle resistance and less tensile strength loss than that treated by BTCA alone. The phosphorus retention on the cotton fabric after one home laundering cycle was approximately 70%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Multifunctional carboxylic acids, such as 1,2,3,4‐butanetetracarboxylic acid (BTCA), were used to bond a hydroxy‐functional organophosphorus oligomer (FR) to cotton fabric in the presence of a catalyst, such as sodium hypophosphite (NaH2PO2). Previously, it was found that the cotton fabric treated with FR and BTCA showed a high level of phosphorus retention after one home laundering cycle. However, the flame retardant properties quickly deteriorated as the number of home laundering cycles was increased. In this research, it was found that the free carboxylic acid groups bound to the cotton fabric form an insoluble calcium salt during home laundering, thus diminishing the flame retardant properties of the treated cotton fabric. It was also found that the free carboxylic acid groups on the treated cotton fabric were esterified by triethanolamine (TEA), and that the formation of calcium salt on the fabric was suppressed by the esterification of the free carboxylic acid groups by TEA. The cotton fabric treated with BTCA and the hydroxy‐functional organophosphorus oligomer significantly improved its flame retardance when a new catalyst system consisting of hypophosphorous acid (H3PO2) and TEA was used in the system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A new kind of eco‐friendly chicken‐feather protein‐based phosphorus–nitrogen‐containing flame retardant was synthesized successfully with chicken‐feather protein, melamine, sodium pyrophosphate, and glyoxal. And its structure was characterized by Fourier transform infrared spectroscopy, and the thermogravimetry of the agent was analyzed. Then the flame retarding performances of the chicken‐feather protein‐based flame retardant and in combination with the borax and boric acid in application to a woven cotton fabric were investigated by the vertical flammability test and limited oxygen index test. In addition, the surface morphologies of the treated and untreated fabrics were conducted by the scanning electron micrographs (SEM), and the thermogravimetric analyses of the treated and untreated cotton were explored, and the surface morphologies of char areas of the treated and untreated fabrics after burnt were tested by the SEM. The results showed that the flame retardancy of the cotton fabric treated by the chicken‐feather protein‐based flame retardant in combination with borax and boric acid was improved further, and the combination of the chicken‐feather protein‐based flame retardant and borax and boric acid could facilitate to form a homogenous and compact intumescing char layer, and the combination of them plays a good synergistic effect in the improvement of the flame retardancy of the treated cotton fabric. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40584.  相似文献   

8.
In this article, N‐Methylol dimethylphosphonopropionamide (FR) in combination with a melamine resin (CL), phosphoric acid (PA) catalyst and zinc oxide (ZnO) or nano‐ZnO co‐catalyst were used (FR‐CL‐PA‐ZnO or nano‐ZnO system) to impart flame‐retardant property on cotton fabrics. FR‐CL or FR‐CL‐PA‐treated cotton specimen showed roughened and wrinkled fabric surface morphology, which was caused by the attack of the FR with slightly acidity. In addition, FTIR analysis showed some new characteristic peaks, carbonyl, CH2 rocking and CH3 asymmetric and CH2 symmetric stretching bands, in the chemical structure of treated cotton specimens. Apart from these, the flame ignited on the flame‐retardant‐treated fabrics (without subjected to any post‐wet treatment) extinguished right after the removal of ignition source. However, FR‐CL treated specimens were no longer flame‐resistant when the specimens subjected to neutralization and/or home laundering, while FR‐CL‐PA treated specimens showed opposite results. By using 0.2% and 0.4% of ZnO or nano‐ZnO as co‐catalyst, the flame spread rate of neutralized and/or laundered test specimens decreased, even the specimens were undergone 10 home laundering cycles. Moreover, flame‐retardant‐treated cotton specimens had low breaking load and tearing strength resulting from side effects of the crosslinking agent used, while addition of ZnO or nano‐ZnO co‐catalyst could compensates for the reduction. Furthermore, the free formaldehyde content was dropped when ZnO and nano‐ZnO co‐catalyst was added in the treatment. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
N‐(2‐hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTCC), a water‐soluble chitosan quaternary ammonium derivative, was used as an antimicrobial agent for cotton fabrics. HTCC has a lower minimum inhibition concentration (MIC) against Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli compared to that of chitosan; however, the imparted antimicrobial activity is lost on laundering. Thus crosslinking agents were utilized to obtain a durable antimicrobial treatment by immobilizing HTCC. Several crosslinkers such as dimethyloldihydroxyethylene urea (DMDHEU), butanetetracarboxylic acid (BTCA), and citric acid (CA) were used with HTCC to improve the laundering durability of HTCC treatment by covalent bond formation between the crosslinker, HTCC and cellulose. The polycarboxylic acid treatment was superior to the DMDHEU treatment in terms of prolonged antimicrobial activity of the treated cotton after successive laundering. Also, the cotton treated with HTCC and BTCA showed improved durable press properties without excessive deterioration in mechanical strength or whiteness when compared to the citric acid treatment. With the addition of only 0.1% HTCC to BTCA solutions, the treated fabrics showed durable antimicrobial activity up to 20 laundering cycles. The wrinkle recovery angle and strength retention of the treated fabrics were not adversely affected with the addition of HTCC. Therefore, BTCA can be used with HTCC in one bath to impart durability of antimicrobial activity along with durable press properties to cotton fabric. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1567–1572, 2003  相似文献   

10.
磷系涤纶纤维用阻燃剂YHD的研制及应用   总被引:1,自引:0,他引:1  
探讨了磷系阻燃整理剂YHD的合成工艺.并对其基本性能、应用技术和使用效果作了介绍。常规的涤纶染色方法和工艺,例如高温高压法、热熔法均适于用YHD对涤纶织物进行阻燃整理。YHD阻燃整理品的极限氧指数(LOI)可高达37,具有较好的阻燃性能。  相似文献   

11.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The phosphorus‐containing acrylate monomer, 2‐acryloyloxyethyl diethyl phosphate (ADEP), was synthesized and applied to cotton fabric by using admicellar polymerization. Sodium dodecylbenzene sulfonate was used as the anionic surfactant. The film of polymerized monomer (PADEP) formed on the cotton surface was characterized by FTIR‐ATR spectroscopy and SEM. Thermal and flame retardant properties of PADEP‐coated cotton were investigated by TGA and flammability tests. Results showed that PADEP polymer film was successfully formed on the cotton fabric. The TGA and DTG analyses showed that the phosphorus‐containing PADEP lowered the decomposition temperature of the treated fabric resulting in a higher char yield than in the case of untreated cotton. The flammability tests showed that the treated cotton had much improved flame retardancy property after the treatment. The treated fabric also retained its good pliability and soft touch with good air permeability. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Flame retardancy in various materials is becoming an increasingly important performance feature. In the textile industries, fire-related problems have become an important concern over the decade. Herein, the polyvinyl alcohol (PVA) and graphene-supported material were functionalized with trimethyl phosphate (TMP) for the synthesis of flame retardant (FR) composite material [graphene polymer functionalized trimethyl phosphate (GPTMP)] in the aqueous medium, which improves the stability of cotton fabric against flame. Graphene and PVA fabricated with phosphorus functional groups make the fabric more comfortable against fire and help to avoid further spreading of fire. The composite-coated fabric sustains for a long time on continuous flame with maintaining its initial shape and size. The GPTMP-coated fabric shows flame retardancy for up to 540 s on constant flame exposure, whereas control samples such as PVA-, graphene oxide-, and TMP-coated fabrics resist for up to 15, 20, and 14 s, respectively. The limiting oxygen index (LOI) and vertical flammability test (VFT) for synthesized composites were performed to confirm and support the flame retardancy property of GPTMP. The GPTMP shows the 35% LOI value and forms the char length of 2.6 cm during VFT. This work provides a simple and eco-friendly method to obtain novel GPTMP, which has a high potential as a FR for different fabrics, including cotton.  相似文献   

14.
In this study, several flame retardants (FRs), containing phosphorus, nitrogen, and silicon, were synthesized. These synthesized FRs were blended with polypropylene (PP) to obtain mixture samples. The flame‐retardant properties of these mixture samples were estimated by the limiting oxygen index (LOI) value and thermal stabilities were characterized by thermogravimetric analysis. The LOI values of these samples were improved from 17.0 to 26.0 and the char yield increased from 0 to 27 wt %. A comparison of these samples, with respect to their LOI values and carbon yield, showed that the FRs, which simultaneously contained phosphorus, nitrogen, and silicon elements, can provide materials with the best flame‐retardant properties, suggesting that there is a synergistic effect among the three elements on the flame‐retardant properties and char yield when they are used in PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 854–860, 2005  相似文献   

15.
In this study, titanium dioxide (TiO2) or nano titanium dioxide (nano‐TiO2) was used as a cocatalyst in the flame‐retardant (FR) formulation of N‐methylol dimethylphosphonopropionamide (Pyrovatex CP New, FR), melamine resin [Knittex CHN, crosslinking agent (CL)], and phosphoric acid (PA) for cotton fabrics to improve the treatment effectiveness and minimize the side effects of the treatment. For FR‐treated cotton fabrics, the flame extinguished right after removal of the ignition source with no flame spreading. However, after neutralization and/or home laundering, FR–CL‐treated specimens failed the flammability test, whereas the opposite results were obtained from FR–CL–PA‐treated specimens. A noticeable result was that the TiO2/nano‐TiO2 cocatalyst had a significant effect on decreasing the flame‐spread rate. Thermal analysis found that the FR‐treated specimens without wet posttreatment showed two endothermic peaks representing the phosphorylation of cellulose and acid‐catalyzed dehydration. In addition, the treated fabrics showed some new characteristic peaks in their chemical structures; these were interpreted as carbonyl bands, CH2 rocking bands, and CH3 asymmetric and CH2 symmetric stretching. The surface morphology of the FR–CL–PA‐treated cotton specimens showed a roughened and wrinkled fabric surface with a high deposition of the finishing agent that had a lower breaking load and tearing strength, which resulted from the side effects of the CL used. However, the addition of a TiO2 or nano‐TiO2 cocatalyst could compensate for the reduction in the tensile strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
新型磷系阻燃剂阻燃环氧树脂的应用研究   总被引:1,自引:0,他引:1  
以新戊二醇、三氯氧磷、1,2,3-三羟基苯为原料合成新型磷系阻燃剂1,2,3-三(5,5-二甲基-1,3-二氧杂己内磷酰氧基)苯(FR),将FR与环氧树脂(EP)熔融混合制备阻燃EP/FR复合材料。采用极限氧指数测试、垂直燃烧实验、热重分析、锥形量热分析、扫描电镜研究了FR对EP的阻燃性能和阻燃机理。结果表明,添加20 % FR的EP/FR复合材料的极限氧指数达到27.8 %,垂直燃烧通过UL94 V-0级,热释放速率平均值和生烟量平均值比未阻燃EP分别降低了77.0 %和82.8 %,扫描电镜分析表明, EP/FR体系燃烧后能形成连续、致密、封闭的焦化炭层。  相似文献   

17.
To address the problem of formaldehyde‐free flame retardation of wood particleboard, a novel phosphorus‐containing compound, di(2,2‐dimethyl‐1,3‐propanediol phosphate) urea (DDPPU) was synthesized. DDPPU was used as flame retardant for wood particleboard. The flammability of treated wood particleboard systems consisted of wood particles, polyurethane (PU) adhesive, and different flame retardant formulations were investigated by limiting oxygen index (LOI). The results of LOI indicate that DDPPU could improve the flame retardancy of wood particleboard. However, when H3BO3 was used as the second flame retardant component and combined with DDPPU, the flame retardant wood particleboard could obtain the highest LOI value (46.0) in these experiments. Thermogravimetric analysis shows that treated wood particleboard can decrease the initial decomposition temperature, and that at higher temperatures the degradation rate are lower than the untreated wood particleboard. Furthermore, wood particleboard treated with DDPPU/H3BO3 has a higher yield of residue char at 600°C than that treated with other flame retardant systems. The ability of char formation of these samples agrees with the order of LOI values. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A finishing process with polyhedral oligomeric silsesquioxane (POSS) and bohemite nanoparticles has been exploited for enhancing the thermal stability and flame retardancy of cotton fabrics. The thermal behavior of flame retardant treated cellulosic fabric has been studied by thermogravimetric analyses (TGAs). It has been found that such nanoparticles favor the carbonization of the cellulose and slow down the kinetics of thermo‐oxidation in air. At the same time, the finished fabrics have turned out to be more efficient with respect to neat cotton as far as the flame retardancy is concerned, pointing out an increase of the time to ignition (TTI) and a decrease of the heat release rate (HRR). Furthermore, a comparison between the fire performances of the nanoparticles under study and a commercial phosphorus‐based flame retardant has been investigated. The morphology and elemental composition present in the treated fabrics have been also investigated using scanning electron microscopy (SEM) coupled to the energy dispersive spectroscopy (EDS), and the results have been compared with the untreated fabric. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Layer‐by‐layer (LbL) assembly of nanocoatings on fabric substrates has been very successful in terms of reduction of flammability. In particular, an LbL system comprised ammonium polyphosphate as the polyanion and chitosan as the polycation, applied to cotton fabric, dramatically reduced cotton flammability. At this point, the fire‐retardant (FR) mechanism of action of this system has never been fully elucidated. Sonicated and nonsonicated coated cotton fabrics were evaluated using a vertical flame test and mass loss calorimeter. Coating morphology was investigated before and after burning. Thermal analyses and chemical analyses in the condensed phase (and in the gas phase) were conducted to reveal the FR mechanism of action. At the cotton surface, a combination of both condensed (formation of aromatic char) and gas phase (release of water and highly flammable gases) mechanisms impart the FR behavior, promoting a kind of “microintumescence” phenomenon. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43783.  相似文献   

20.
The high flammability of cotton fleece makes it necessary to apply a flame retardant system on cotton fleece so that it can meet the federal regulation ‘Standard for the Flammability of Clothing Textiles’ (16 CFR 1610). The objective of this research was to reduce the flammability of cotton fleece using the phosphorus‐containing maleic acid oligomers (PMAO) synthesized by aqueous free radical polymerization of maleic acid. We found that PMAO can be bound to cotton fleece by esterifying with cotton cellulose with sodium hypophosphite as the catalyst. Both the 45° flammability and limiting oxygen index data indicated that the treatment of cotton using PMAO reduced the flammability of cotton fleece. The micro‐scale combustion calorimetric data revealed that PMAO reduced the peak heat release rate and heat release capacity of the treated cotton woven fabric. The cotton fleece treated with PMAO/NaH2PO2 passed the federal flammability test (16 CFR Part 1610) and achieved ‘Class 1’ flammability. The PMAO bound to cotton was durable to multiple home laundering cycles. The treated fleece also showed high strength retention with little change in fabric whiteness. The use of triethanolamine as an additive modestly enhanced the performance of PMAO with no significant changes in fabric physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号