首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
8‐Hydroxy‐4‐azoquinolinephenylmethacrylate (8H4AQPMA) was prepared and polymerized in ethyl methyl ketone (EMK) at 65°C using benzoyl peroxide as free radical initiator. Poly(8‐hydroxy‐4‐azoquinolinephenylmethacrylate) poly(8H4AQPMA) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) complexes of poly(8H4AQPMA) were prepared. Elemental analysis of polychelates suggests that the metal‐ligand ratio is about 1 : 2. The polychelates were further characterized by infrared spectra, X‐ray diffraction, spectral studies, and magnetic moments. Thermal analyses of the polymer and polychelates were carried out in air. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1516–1522, 2006  相似文献   

2.
Poly(8‐hydroxy‐4‐azoquinolinephenol‐formaldehyde) resin (8H4AQPF) was prepared by condensing 8‐hydroxy 4‐azoquinoline phenol with formaldehyde (1 : 1 mol ratio) in the presence of oxalic acid. Polychelates were obtained when the DMF solution of poly(8H4AQPF) containing a few drops of ammonia was treated with the aqueous solution of Cu(II) and Ni(II) ions. The polymeric resin and polymer–metal complexes were characterized with elemental analysis and spectral studies. The elemental analysis of the polymer–metal complexes suggested that the metal‐to‐ligand ratio was 1 : 2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polymer–metal complexes of the Cu(II) complexes were square planar and those of the Ni(II) complexes were octahedral. X‐ray diffraction studies revealed that the polymer metal complexes were crystalline. The thermal properties of the polymer and polymer–metal complexes were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1506–1510, 2006  相似文献   

3.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

4.
8‐hydroxy‐5‐azoquinolinephenylacrylate‐formaldehyde (8H5AQPA‐F) macromonomer was prepared from acryloylchloride, with condensation products of 8‐hydroxy‐5‐azoquinolinephenol‐formaldehyde, and polymerized in DMF at 70°C using benzoyl peroxide as free radical initiator. Poly(8H5AQPA‐F) was characterized by infrared and nuclear magnetic resonance spectroscopic techniques. Polychelates were obtained in alkaline solution of polymeric ligand, with the aqueous solution of Cu(II) and Ni(II). Elemental analysis of polychelates suggests that the metal to ligand ratio is about 1:2. The polymer metal complexes were also characterized by IR, XRD, magnetic moments, and thermal analysis. The effects of pH and electrolyte on the metal uptake behavior of the resin were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 797–802, 2007  相似文献   

5.
A chelating polymer, poly(2,4‐dihydroxy benzophenone hydrazone–formaldehyde) [poly(DHBPH–F)], was synthesized by the polycondensation of 2,4‐dihydroxy benzophenone hydrazone with formaldehyde in the presence of oxalic acid as a catalyst. Poly(DHBPH–F) was characterized by Fourier transform infrared and 1H‐NMR spectral data. The molecular weight of the polymer was determined by gel permeation chromatography. Polychelates were obtained when the dimethylformamide solution of the polymer containing a few drops of ammonia was treated with an aqueous solution of metal ions. Elemental analysis of the polychelates indicated that the metal–ligand ratio was 1 : 2. The IR spectra of the polymer–metal complexes suggested that the metals were coordinated through the oxygen of the phenolic? OH group and the nitrogen of the azomethine group. The electron paramagnetic resonance and magnetic moment data indicated a square planar configuration for Cu(II) chelate and an octahedral structure for Ni(II) chelate. The thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction data indicated that the incorporation of the metal ions significantly enhanced the degree of crystallinity. The polymerization initiation, electrical conductivity, and catalytic activity of the polychelates are discussed. Heavy‐metal ions [viz., Cu(II) and Ni(II)] were removed with this formaldehyde resin, and the metal‐ion uptake efficiency at different pH's, the nature and concentration of the electrolyte, and the reusability of the resin were also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The polymeric ligand (resin) was prepared from 2‐hydroxy‐4‐methoxybenzophenone with 1,3‐propane diol in the presence of polyphosphoric acid as a catalyst on constant heating at 160°C for 13 h. The poly[(2‐hydroxy‐4‐methoxybenzophenone) propylene] (HMBP‐PD) form 1 : 2 metal/ligand polychelates (metal–polymer complexes) with La(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), and Dy(III). The polymeric ligand and its polychelates (metal–polymer complexes) were characterized on the basis of elemental analyses, electronic spectra, magnetic susceptibilities, IR‐spectroscopy, NMR, and thermogravimetric analyses. The molecular weight was determined using number average molecular weight (Mn) by a vapor pressure osmometry (VPO) method. Activation energy ( E ) of the resin was calculated from differential scanning calorimetry (DSC). All the polychelates are paramagnetic in nature except La(III). Ion‐exchange studies at different electrolyte concentrations, pH, and rate have been carried out for lanthanides(III) metal ions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
The monomer 5‐(4‐acryloyloxyphenylazo)salicylaldehyde [5,4‐APASAL] was prepared and polymerized in dimethylformamide (DMF) at 70°C using benzoyl peroxide as free radical initiator. Poly5‐(4‐acryloyloxyphenylazo) salicylaldehyde [poly(5,4‐APASAL)] was characterized by infrared and nuclear magnetic resonance spectroscopic technique. The molecular weight of the polymer was determined by gel permeation chromatography method. Cu(II), Ni(II), Cr(III), and Cr(VI) complexes of poly(5,4‐APASAL) were prepared. Elemental analysis of polychelates suggests that the metal to ligand ratio is about 1 : 2. The polymer metal complexes were also characterized by XRD, magnetic moment, and thermal analysis. The effect of pH and electrolyte concentration in the metal uptake behavior of the polymer was also studied. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Polychelates were synthesized by the addition of aqueous solutions of copper(II), cadmium(II), and nickel(II) chlorides to aqueous solutions of poly(maleic anhydride‐alt‐acrylic acid) [poly(MA‐alt‐AA)] in different pH media. The thermal properties of poly(MA‐alt‐AA) and its metal complexes were investigated with thermogravimetry and differential scanning calorimetry (DSC) measurements. The polychelates showed higher thermal stability than poly(MA‐alt‐AA). The thermogravimetry of the polymer–metal complexes revealed variations of the thermal stability by complexation with metal ions. The relative thermal stabilities of the systems under investigation were as follows: poly(MA‐alt‐AA)–Cd(II) > poly(MA‐alt‐AA)–Cu(II) > poly(MA‐alt‐AA)–Ni(II) > poly(MA‐alt‐AA). The effects of pH on the complexation and gravimetric analysis of the polychelates were also studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3926–3930, 2006  相似文献   

9.
Polymer metal complexes of poly(styrene sulfonic acid‐co‐maleic acid) and Cu(II), Ni(II), Co(II), and Zn(II) were synthesized. The magnetic, spectral, and thermal properties, as well as the electrical conductivities, of the chelates were investigated, and possible structures were assigned to the polychelates. Semiempirical calculations at the AM1 level were carried out on the geometrical arrangement of the polychelates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2546–2551, 2002  相似文献   

10.
Monomeric Schiff base derived from salicylaldehyde and 1,3‐diaminopropane was subjected to polycondensation reaction with formaldehyde and piperazine in basic medium. The resin was found to form polychelates readily with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. The materials were characterized by elemental analysis, spectral studies (IR, 1H‐NMR, 13C‐NMR, and UV–visible), magnetic moment measurements, and thermal analysis. The electronic spectra and magnetic moment measurements of the synthesized polychelates confirmed the geometry of the central metal ion. Metal–resin bonds were registered in the IR spectra of the polychelates. The thermogravimetric analysis data indicated that the polychelates were more stable than the corresponding polymeric Schiff base. All the synthesized metal–polychelates showed excellent antibacterial activities against the selected bacteria. The antimicrobial activities were determined by using the shaking flask method, where 25 mg/mL concentrations of each compound were tested against 105 CFU/mL bacteria solutions. The number of viable bacteria was calculated by using the spread‐plate method, where 100 μL of the incubated antimicrobial agent in bacteria solutions were spread on agar plates, and the number of bacteria was counted after 24 h of incubation period at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

12.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

13.
Summary The parent polymer, poly(allylamine) as ligand polymer was employed to synthesize polychelates of heavy metal ions. The functional poly(allylamine) and its Ni(II), Co(II) and Cu(II) metal chelates were characterized by elemental analysis, FT-IR spectroscopy, TGA, and SEM. For the polychelates magnetic and conductivimetry studies were also carried out.  相似文献   

14.
A novel polymeric Schiff base was synthesized by the reaction of a Schiff base from 2,4‐dihydroxy benzaldehyde and aniline with acryloyl chloride and was polymerized in methyl ethyl ketone at 70°C with benzoyl peroxide as a free‐radical initiator. Polychelates were obtained in an alkaline solution of poly(2‐hydroxy‐4‐acryloyloxy‐N‐phenylbenzylidine) with aqueous solutions of metal ions such as Cu(II), Ni(II), Co(II), Ca(II), Cd(II), Mn(II), and Zn(II). The polymeric Schiff base and polychelates were characterized with elemental analysis and spectral studies. The elemental analysis of the polychelates suggested that the metal‐to‐ligand ratio was 1:2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polychelates of the Cu(II) complex were square‐planar, those of the Ni(II), Mn(II), and Co(II) complexes were octahedral, and those of the Ca(II), Cd(II), and Zn(II) complexes were tetrahedral. X‐ray diffraction studies revealed that the polychelates were highly crystalline. The thermal properties of the Schiff base and polychelates were also examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 494–500, 2004  相似文献   

15.
Phenolic Schiff bases derived from o‐, m‐, and p‐hydroxybenzaldehydes and 4, 4′‐diaminodiphenyl ether were subjected to polycondensation reaction with formaldehyde. The resins were found to form polychelates readily with several metal ions. The materials were characterized by elemental analysis, GPC, IR, UV‐Vis, 1H‐NMR, XRD, and thermal analyses like TG, DTG, and DSC studies. The 1H‐NMR spectra of the resins provided evidence of polycondensation with well‐defined peaks for bridging methylene and terminal methylol functions. The metal‐ligand bonds were registered in the IR spectra of the polychelates. The thermal analysis data provided the kinetic parameters like activation energy, frequency factor, and entropy changes associated with the thermal decomposition. These data indicated the resins to be more stable than the polychelates. The DSC and XRD data indicated that the incorporation of metal ions significantly enhanced the crystallinity of the polymers. The resins could adsorb several metal ions from dilute aqueous solutions. Adsorption characteristics of the resins towards Cu(II) and Ni(II) were studied spectrophotometrically both in competitive and noncompetitive conditions. The effects of pH, contact time, quantity of the sorbent, concentration of the metal ions in a suitable buffer medium were studied. The resins were found to be selective for Cu(II) leading to its separation from a mixture of Cu(II) and Ni(II). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 967–981, 2000  相似文献   

16.
4-Acetyl-3-hydroxyphenylacrylate (AHAH) was synthesized and polymerized in 2-butanone using benzoyl peroxide as initiator. Poly(4-acetyl-3-hydroxyphenyl-acrylate) (PAHAH) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) chelates of PAHAH were synthesized. The diffuse reflectance spectra and magnetic moments of the polychelates show distorted planar and octahedral structures for poly[Ni(AHA)2] and poly[Cu(AHA)2(OH2)2] complexes, respectively. The thermal properties of the polychelates are also discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 177–182, 1998  相似文献   

17.
The synthesis and detailed characterization of racemic 3‐methyl‐1,4‐dioxan‐2‐one (3‐MeDX) are reported. The bulk ring‐opening polymerization of 3‐MeDX, to yield a poly(ester‐ether) meant for biomedical applications, in the presence of various initiators such as tin(II) octanoate, tin(II) octanoate/n‐butyl alcohol, aluminium tris‐isopropoxide and an aluminium Schiff base complex (HAPENAlOiPr) under varying experimental conditions is here detailed for the first time. Polymerization kinetics were investigated and compared with those of 1,4‐dioxan‐2‐one. The studies reveal that the rate of polymerization of 3‐MeDX is less than that of 1,4‐dioxan‐2‐one. Experimental conditions to achieve relatively high molar masses have been established. Thermodynamic parameters such as enthalpy and entropy of 3‐MeDX polymerization as well as ceiling temperature have been determined. Poly(D ,L ‐3‐MeDX) is found to possess a much lower ceiling temperature than poly(1,4‐dioxan‐2‐one). Poly(D ,L ‐3‐MeDX) was characterized using NMR spectroscopy, matrix‐assisted laser desorption ionization mass spectrometry, size exclusion chromatography and differential scanning calorimetry. This polymer is an amorphous material with a glass transition temperature of about ?20 °C. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Poly(2‐aminobenzoic acid) and poly(3‐aminobenzoic acid) were synthesized by chemical polymerization of the respective monomers with aqueous 1M hydrochloric acid and 0.49M sodium hydroxide, using ammonium persulfate as an oxidizing agent. In addition, polymerization in an acid medium was carried out in the presence of metal ions, such as Cu(II), Ni(II), and Co(II). Poly(2‐aminobenzoic acid‐co‐aniline) and poly(3‐aminobenzoic acid‐co‐aniline) were synthesized by chemical copolymerization of aniline with 2‐ and 3‐aminobenzoic acids, respectively, in aqueous 1M hydrochloric acid. The copolymers were synthesized at several mole fractions of aniline in the feed and characterized by UV–visible and FTIR spectroscopy, the thermal stability, and the electrical conductivity. Metal ions, such as Cu(II), Ni(II), and Co(II), were incorporated into homo‐ and copolymers by the batch method. The percentage of metal ions in the polymers was higher in the copolymers than in the homopolymers. The thermal stability of the copolymers increased as the feed mole fraction of aniline decreased and varied with the incorporation of metal ions in the polymers. The electrical conductivity of the homo‐ and copolymers was measured, which ranged between 10?3 and 10?10 S cm?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2641–2648, 2003  相似文献   

19.
In this work, 2‐(3‐p‐bromophenyl‐3‐methylcyclobutyl)‐2‐hydroxyethylmethacrylate (BPHEMA) [monomer] was synthesized by the addition of methacrylic acid to 1‐epoxyethyl‐3‐bromophenyl‐3‐methyl cyclobutane. The monomer and poly(BPHEMA) were characterized by FT‐IR and [1H] and [13C]NMR. Average molecular weight, glass transition temperature, solubility parameter, and density of the polymer were also determined. Thermal degradation of poly[BPHEMA] was studied by thermogravimetry (TG), FT‐IR. Programmed heating was carried out at 10 °C min−1 from room temperature to 500 °C. The partially degraded polymer was examined by FT‐IR spectroscopy. The degradation products were identified by using FT‐IR, [1H] and [13C]NMR and GC‐MS techniques. Depolymerization is the main reaction in thermal degradation of the polymer up to about 300 °C. Percentage of the monomer in CRF (Cold Ring Fraction) was estimated at 33% in the peak area of the GC curve. Intramolecular cyclization and cyclic anhydride type structures were observed at temperatures above 300 °C. The liquid products of the degradation, formation of anhydride ring structures and mechanism of degradation are discussed. © 1999 Society of Chemical Industry  相似文献   

20.
Polymer complexes with uranium, cobalt, and iron chlorides were synthesized and investigated by elemental analysis, electronic (uv–visible), IR vibration, and magnetic moment measurements. The thermal stabilities of N‐acryloyl,N′‐cyanoacetohydrazide (ACAH) homopolymers and polymer complexes of poly(ACAH) (PACAH) with metal chlorides were studied thermogravimetrically. The rates of polymerization of PACAH in the absence and presence of metal chlorides were studied. The activation energies of the degradation of the homopolymer and polymer complexes were calculated using the Arrhenius equation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3354–3358, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号