首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

2.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by the sequential‐IPN method. The thermal characterization of the IPNs was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depression of the melting temperature (Tm) of the PVA segment in IPNs was observed with increasing PNIPAAm content using DSC. DEA was employed to ascertain the glass‐transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tg values, indicating the presence of phase separation in the IPNs. The thermal decomposition of IPNs was investigated using TGA and appeared at near 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 881–885, 2003  相似文献   

3.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

4.
In this article, a series of poly(N‐isopropylacrylamide) (PNIPAM)‐based hydrogels were prepared under microwave irradiation using poly(ethylene oxide)‐600 (PEO‐600) as reaction medium and microwave‐absorbing agent as well as pore‐forming agent. All of the temperature measurements, gel fractions, and FTIR analyses proved that the PNIPAM hydrogels were successfully synthesized. Within 1 min, the PNIPAM hydrogel with a 98% yield was obtained under microwave irradiation. The PNIPAM hydrogels thus prepared exhibited controllable properties such as pore size, equilibrium swelling ratios, and swelling/deswelling rates when changing the feed weight ratios of monomer (N‐isopropylacrylamide, NIPAM) to PEO‐600. These properties are well adapted to the different requirements for their potential application in many fields such as biomedicine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4177–4184, 2006  相似文献   

5.
Interpenetrating polymer networks (IPNs) composed of silk sericin (SS) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared simultaneously. The properties of the resultant IPN hydrogels were characterized by differential scanning calorimetry and SEM as well as their swelling behavior at various temperatures and pH values. The single glass transition temperature (Tg) presented in the IPN thermograms indicated that SS and PNIPAAm form a miscible pair. The swollen morphology of the IPNs observed by SEM demonstrated that water channels (pores present in SEM micrographs) were distributed homogeneously through out the network membranes. The swelling ratio of the IPNs depended significantly on the composition, temperature and pH of the buffer solutions. The dynamic transport of water into the IPN membrane was analyzed based on the Fickian equation. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Hydrogels with environment‐sensitive properties have great potential applications in the controlled drug release field. In this paper, hybrid hydrogels with semi‐interpenetrating polymer networks (semi‐IPNs), composed of poly(N‐isopropylacrylamide) (PNIPAM) as the thermo‐sensitive component by in situ polymerization and self‐assembled collagen nanofibrils as the pH‐sensitive framework, were prepared for controlled release of methyl violet as a model drug. From Fourier transform infrared spectroscopy and scanning electron microscopy, it was indicated that the crosslinking of PNIPAM in the presence of collagen nanofibrils led to the formation of semi‐IPNs with homogeneous porous structure, and the semi‐IPNs showed improved thermal stability and elastic properties compared with the native collagen as determined using differential scanning calorimetry and rheologic measurements. Furthermore, the semi‐IPNs possessed swelling behaviors quite different from those of neat collagen or PNIPAM hydrogel under various pH values and temperatures. Correspondingly, as expected, the drug release behavior in vitro for semi‐IPNs performed variously compared with that for single‐component semi‐IPNs, which revealed the tunable performance of semi‐IPNs for release ability. Finally the thermo‐ and pH‐responsive mechanism of the semi‐IPNs was illuminated to provide guidance for the application of the thermo‐ and pH‐sensitive collagen‐based hybrid hydrogels in controlled drug delivery systems. © 2019 Society of Chemical Industry  相似文献   

7.
Temperature‐sensitive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide) were successfully prepared. The structure and properties were systematically characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis, and the swelling and deswelling behavior was also investigated. It was found that the hydrogels had good miscibility, thermal stability and temperature sensitivity, and the lower critical solution temperature was ca 32 °C. Changing the content of soy protein or crosslinker could be used to control the swelling behavior, water retention and network structure of the IPN hydrogels. The results show that the novel IPN hydrogels may be of potential interest in drug delivery systems. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Interpenetrating polymer network (IPN) hydrogels based on poly(ethylene oxide) and poly(methyl methacrylate) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone and ethylene glycol dimethacrylate as initiators and crosslinkers, respectively. The IPN hydrogels were analyzed for sorption behavior at 25°C and at a relative humidity of 95% using dynamic vapor sorption. The IPN hydrogels exhibited a relatively high equilibrium water content in the range of 13–68%. The state of water in the swollen IPN hydrogels was investigated using differential scanning calorimetry. The free water in the hydrogels increased as the hydrophilic content increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 258–262, 2003  相似文献   

9.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of poly(dimethyl–aminoethyl methacrylate) (PDMAEMA) and poly(ethylene oxide) (PEO) were synthesized by γ‐radiation; three semi‐IPNs with 80 : 20, 90 : 10, and 95 : 5 weight ratios of DMAEMA/PEO were obtained by use of this technique. The gel–dose curves showed that the hydrogels were characterized by a structure typical of semi‐IPNs and the results of elemental analysis supported this point. The temperature‐induced phase transition of semi‐IPNs with the composition of 95 : 5 was still retained, with the lower critical solution temperature of PDMAEMA shifting from 40 to 27°C. The temperature sensitivity of the other two semi‐IPNs gradually disappeared. The pH sensitivity of three semi‐IPNs was still retained but the pH shifted slightly to lower values with increasing PEO content in the semi‐IPNs. The effect of PEO content in semi‐IPNs on their environmental responsiveness was discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2995–3001, 2004  相似文献   

10.
Semi‐crystalline polymer nanocomposites were prepared using successive meltings and recrystallizations techniques by intercalation of small guest molecules such as 4‐chlorotoluene (PCT), 4‐bromotoluene (PBT) and 1,4‐dibromobenzene (PDBB) into poly(ethylene oxide) (PEO) crystals. Differential scanning calorimetry, Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction experimental results show that supramolecular selectivity exists for the PEO–PDBB/PBT ternary system, while there is no supramolecular selectivity for PEO–PCT/PBT ternary nanocomposites. The interactions between PEO chains and small guest molecules have an important influence on the polymer conformation, which results in the dramatic difference in intercalation behavior. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
A series of the thermosensitive interpenetrating polymer network hydrogels composed of soy protein and poly(N‐isopropylacrylamide) were successfully prepared. The structure and properties were systematically characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry. It was found that the hydrogels had good miscibility and high porosity, and the volume phase transition temperatures of the hydrogels were around 32°C. The release behavior and the release mechanism of a model protein, bovine serum albumin (BSA), were also investigated in detail. The results indicated that the release behavior of BSA had strong temperature dependence and the release percentage of BSA could be controlled by modulating the amount of soy protein or crosslinking agent. The analysis of the release mechanism revealed that the Fickian diffusion controlled release was dominant under the experimental conditions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

12.
Thermosensitive hydrogels were prepared by free radical polymerization in aqueous solution from N‐isopropylacrylamide (NIPA) monomer and N,N‐methylenebis(acrylamide) (MBAAm) crosslinker. The swelling equilibrium of the hydrogels in deionized water was investigated as a function of temperature and MBAAm content. The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the amount of MBAAm content. The average molecular mass between crosslinks and polymer–solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The swelling equilibrium of the hydrogels was also investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). In deionized water, the hydrogels showed a discontinuous volume phase transition at 32°C. In SDS and DTAB solutions, the equilibrium swelling ratio and the volume phase transition temperature (lower critical solution temperature) of the hydrogels increased, which is ascribed to the conversion of nonionic PNIPA hydrogel into polyelectrolyte hydrogels because of binding of surfactant molecules through the hydrophobic interaction. Additionally, the amount of free SDS and DTAB ions was measured at different temperatures by a conductometric method; it was found that the electric conductivity of the PNIPA–surfactant systems depended strongly on both the type and concentration of surfactant solutions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1756–1762, 2006  相似文献   

13.
Semi‐interpenetrating polymer networks (SIPNs) consisting of polycaprolactone (PCL) and poly(ethyleneglycol) (PEG) macromer was prepared to improve tensile property in developing biodegradable sutures. When the PEG macromer formed SIPNs with PCL, biodegradability, mechanical strength, and hydrophilicity were improved. The SIPNs fibers formed from the dry spinning process showed an increase of not only tensile strength but also water content with an increase of PEG content. These results represent an increase of the crosslinking density of the PEG network with hydrophobic property. The drawing of SIPNs fibers also further enhanced the tensile strength and the crystallinity of the SIPNs fibers. Unimelting temperature of the SIPNs fiber was observed as an indication of the polymer network without phase separation. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 835–841, 2002; DOI 10.1002/app.10351  相似文献   

14.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

16.
Thermally sensitive polymers change their properties with a change in environmental temperature in a predictable and pronounced way. These changes can be expected in drug delivery systems, solute separation, enzyme immobilization, energy‐transducer processes, and photosensitive materials. We have demonstrated a thermal‐sensitive switch module, which is capable of converting thermal into mechanical energy. We employed this module in the control of liquid transfer. The thermally sensitive switch was prepared by crosslinking poly(N‐isopropylacrylamide) (PNIPAAm) gel inside the pores of a sponge to generate the composite PNIPAAm/sponge gel. This gel, contained in a polypropylene tube, was inserted into a thermoelectric module equipped with a fine temperature controller. As the water flux through the composite gel changes from 0 to 6.6 × 102 L m−2 h, with a temperature change from 23 to 40°C, we can reversibly turn on and off the thermally sensitive switch. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75:1735–1739, 2000  相似文献   

17.
Stimuli‐responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with polymers exhibiting lower critical solution temperature (LCST) phase behavior, such as poly(N‐isopropylacrylamide) (PNIPAAm). The behavior of aqueous solutions of sodium alginate (NaAl) grafted with PNIPAAm (NaAl‐g‐PNIPAAm) copolymers as a function of composition and temperature is presented. The products obtained exhibit a remarkable thermothickening behavior in aqueous solutions if the degree of grafting, the concentration, and the temperature are higher than some critical values. The sol–gel‐phase transition temperatures have been determined. It was found that at temperatures below LCST the systems behave like a solution, whereas at temperatures above LCST, the solutions behave like a stiff gel, because of PNIPAAm segregation. This behavior is reversible and could find applications in tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Interpenetrating polymeric networks based on sodium alginate and poly(N‐isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′‐methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X‐ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature‐responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X‐ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo‐SEM showed the highly heterogeneous nature of the gels. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The synthesis of a thermoresponsive graft copolymer consisting of a maleic acid/vinyl acetate alternating copolymer backbone (MAc‐alt‐VA) and poly(N‐isopropylacrylamide) (PNIPAM) side chains is reported. Turbidimetric measurements in dilute aqueous solutions showed that no macroscopic phase separation takes place when the temperature is raised above the lower critical solution temperature (LCST) of PNIPAM, even at pH = 2. Moreover, in semi‐dilute aqueous solutions, a pronounced thermally induced viscosity increase (thermothickening) was observed. This thermoresponsive behaviour has been attributed to the interconnection of the hydrophilic MAc‐alt‐VA graft copolymer backbones by means of the hydrophobic PNIPAM side chain aggregates formed as the temperature increases above the LCST of this polymer. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
A series of thermosensitive hydrogels containing adamantyl groups were fabricated by copolymerization of N‐isopropylacrylamide and adamantyl methacrylate (AdMA). The thermal properties of such copolymeric hydrogels were studied by differential scanning calorimetry. The mechanical properties were emphasized through compression, tension, and dynamic mechanical analysis (DMA). Moreover, Rubber elasticity theory was used to evaluate the network parameters based on compressive stress–strain measurements. The results indicate that both the microstructure and physical properties strongly depend on the quantity of AdMA in the copolymeric gels. As the content of AdMA increases, the volume phase transition temperature of hydrogels decreases linearly, and the mechanical strength can be significantly improved, the effective crosslinking density (νe) increases monotonously, while the polymer‐water interaction parameter (χ) decreases first and then increases with AdMA content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号