首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using in situ prepolymerization and radiation curing, high‐impact polystyrene (HIPS) with a bimodal distribution of the size of the rubber particles (bimodal HIPS) was synthesized in the presence of ultrafine full‐vulcanized powdered styrene–butadiene rubber (UFPSBR) and polybutadiene rubber (BR). TEM photographs indicated that UFPSBR was dispersed uniformly as a single particle with a diameter of about 100 nm. On the other hand, bimodal HIPS with different rubber particle size distributions could also be obtained by blending HIPS and UFPSBR grafting styrene (UFPSBR‐g‐St) with different grafting yields. The bimodal HIPS with the smallest rubber particle size, at about 100 nm, could be prepared by blending the monomodal HIPS containing big rubber particles with polystyrene/UFPSBR. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Polyisoprene‐block‐polystyrene‐block‐polyisoprene (ISI) was synthesized by the iniferter route and its use, as compared to a commercial polystyrene‐block‐polyisoprene‐block‐polystyrene (SIS), in the enhancement of the toughness of high‐impact polystyrene (HIPS), prepared by the γ‐radiation vulcanized natural rubber (RVNR) latex/phase transfer/bulk polymerization technique, was investigated. Addition of 5% SIS was adequate as an interfacial agent, which effectively increased the unnotched Izod impact energy of HIPS, whereas use of 10% of ISI was required. A long polyisoprene block with two polystyrene segments of SIS was favorable for compatibilization of HIPS. Transmission electron micrographs revealed the uniform distribution of the block copolymer at the shell region of the rubber particle. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1307–1316, 2002  相似文献   

3.
γ‐Radiation vulcanized natural rubber (RVNR)/phase transfer/suspension polymerization technique was used to prepare high‐impact polystyrene (HIPS) in bead form. The high notched Izod impact resistance of HIPS based on RVNR was observed and compared with that of unmodified PS. The impact resistance of HIPS based on RVNR was further enhanced by addition of 10% of polystyrene‐block‐polyisoprene‐block‐polystyrene copolymer. A mesh structure of all crosslinked rubber particles containing polystyrene and long crazes in HIPS were observed under electron microscopy. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
Phasemorphology and mechanical properties of blends of high‐impact polystyrene (HIPS) and polycarbonate (PC) blends compatibilized with a polystyrene (PS) and polyarylate (PAr) (PS–PAr) block copolymer were investigated. Over a broad range of composition from 50/50 through 30/70, HIPS/PC blends formed cocontinuous structures induced by the flow during the extrusion or injection‐molding processes. These cocontinuous phases had heterogeneity between the parallel and perpendicular directions to the flow. The micromorphology in the parallel direction to the flow consisted of stringlike phases, which were highly elongated along the flow. Their longitudinal size was long enough to be longer than 180 μm, while their lateral size was shorter than 5 μm, whereas that in the perpendicular direction to the flow showed a cocontinuous phase with regular spacing due to interconnection or blanching among the stringlike phases. The PS–PAr block copolymer was found to successfully compatibilize the HIPS/PC blends. The lateral size of the stringlike phases could be controlled both by the amount of the PS–PAr block copolymer added and by the shear rate during the extrusion or injection‐molding process without changing their longitudinal size. The HIPS/PC blend compatibilized with 3 wt % of the PS–PAr block copolymer under an average shear rate of 675 s?1 showed a stringlike phase whose lateral size was reduced almost equal to the rubber particle size in HIPS. The tensile modulus and yield stress of the HIPS/PC blends could be explained by the addition rule of each component, while the elongation at break was almost equal to that of PC. These mechanical properties of the HIPS/PC blends can be explained by a parallel connection model independent of the HIPS and PC phases. On the other hand, the toughness factor of the HIPS/PC blends strongly depended on the lateral size of the stringlike phases and the rubber particle size in the HIPS. It was found that the size of the string phases and the rubber particle should be smaller than 1.0 μm to attain a reasonable energy absorbency by blending HIPS and PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2347–2360, 2001  相似文献   

5.
A new application of low-angle laser light scattering has led to a new instrument capable of characterizing the rubber particle size distribution of high-impact polystyrene (HIPS) containing particles as small as 0.1 μ. Rubber particle size distributions of several HIPS resins have been characterized, and the particle size ranking of resins using light scattering parallels the ranking of resins using photomicroscopy. Several solvents have been employed to suspend the HIPS rubber particles for the scattering determination. Swelling of the rubber phase has been found to be relatively insensitive to variations in rubber phase crosslinking when methyl ethyl ketone is used to suspend the rubber particles. Particle swelling in methyl ethyl ketone does not detract from the usefulness of the light scattering method for HIPS rubber particle size characterization.  相似文献   

6.
Accurate characterization of high-impact polystyrene (HIPS) rubber particle size distribution has been achieved using an automatic image analysis system. The new method involves preparation of a microscope slide consisting of a dilute suspension of HIPS particles in a polymer matrix. Images of silhouetted rubber particles of true diameter are obtained using an image processor and particle size calculations can be made with a minimum of editing of the binary image. The new method provides measurement of true rubber particle diameters because the particles in the prepared slide are not swollen by any solvent.  相似文献   

7.
Poly1‐hexene was prepared using a conventional heterogeneous Ziegler–Natta catalyst and its stereoregularity was characterized using 13C‐NMR analysis. New kind of high impact polystyrene (HIPS) was prepared by radical polymerization of styrene in the presence of different amounts of synthesized poly1‐hexene (PH) as impact modifier (HIPS/PH) and compared with conventional high impact polystyrene with polybutadiene (HIPS/PB) as rubber phase. Scanning electron microscopy (SEM) revealed that the dispersion of poly1‐hexene in polystyrene matrix was more uniform compared with it in HIPS/PB. The impact strength of HIPS/PH was 29–79% and 80–289% higher than that in HIPS/PB and neat polystyrene, respectively. FTIR was used to confirm more durability of HIPS/PH samples toward ozonation. To study the effect of rubber type and amount on the Tgs of polystyrene, differential scanning calorimetry was employed. Results obtained from TGA demonstrated higher thermal stability of HIPS/PH sample in comparison with conventional HIPS/PB one. Our obtained results suggest new high impact polystyrene that in all studied aspects has better performance than the conventional HIPS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43882.  相似文献   

8.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999  相似文献   

9.
Poly(vinyl chloride) was blended with an acrylic rubber at a variety of blending ratio using a twin‐screw extruder. The acrylic rubber was compounded with sulfur and sodium stearate in a two‐roll mill prior to the blending. Dynamic vulcanization was performed in a compression mould at 170°C. Mechanical properties of the blends were determined by using a tensile testing machine. Scanning electron microscope was used to examine morphology of these blends. Degree of crosslinking of acrylic rubber in the blends was evaluated by using a differential scanning calorimeter. It was found that the normal blends are miscible regardless of the blending variables. By performing dynamic vulcanization, however, the blends became immisicible, showing a typical dispersed particle morphology, which was accompanied by a remarkable improvement of tensile properties. The screw‐rotating speed was an important parameter affecting particle size and crosslink density of the rubber phase, which in turn controlled the tensile toughness of the blends. On the one hand, tensile toughness increased with the speed because of the decreasing particle size. On the other hand, the toughness decreased with the speed because of the decreasing crosslink density of the rubber. As a result, there was an optimum speed for each blend ratio, which corresponded to the maximum toughness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2657–2663, 2003  相似文献   

10.
A widely accepted method for determining the particle size of the dispersed phase in impact polystyrene is by the microscopic examination of microtomed sections or dilute solutions of the polymer. Although this technique is relatively quick, it has obvious shortcomings to its statistical relaibility. In an effort to obtain more meaningful data, a Coulter Counter was employed to measure the average particle size and particle size distribution of the dispersed phase in a number of impact polystyrene samples. The materials examined contained rubber particles ranging from one to twenty microns in diameter. It was found that the weight average distribution of these particles was most nearly described by a log-normal probability function. The relative accuracy and reproducibility of the measurements made with the Coulter Counter suggest that it is a valuable tool for obtaining quantitative particle size information on the rubber modified polystyrene system.  相似文献   

11.
Thermoplastic vulcanizates (TPVs) based on high impact polystyrene (HIPS)/styrene‐butadiene rubber (SBR) blends were prepared by dynamic vulcanization technique. The rheological, mechanical and morphological properties of the dynamically vulcanized blends were investigated systematically. As determined by capillary rheometer, the apparent viscosity of the blends decreases as the shear rate increases, indicating obvious pseudoplastic behavior. At low shear rate, the apparent viscosity of these blends is considerably higher than that of neat HIPS and decreases with the increase of HIPS concentration. The increase of HIPS content in the dynamically vulcanized blends contributes to the increase of tensile strength and hardness properties, while elongation at break and tensile set at break reach a maximum at 30 and 50 wt % of the HIPS content, respectively. The etched surfaces of the HIPS/SBR TPVs were investigated using field‐emission scanning electron microscopy, the morphological study reveals continuous HIPS phase and finely dispersed SBR elastomeric phase in the TPVs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The relationship between synthesis factors and the impact resistance of high impact polystyrene (HIPS) is investigated in the light of its morphology and dynamic mechanical properties. A decrease in polymerization temperature results in an increase in Tg, melt viscosity and molecular weight of the continuous polystyrene phase as characterized by gel permeation chromatography. The separated, occluded polystyrene phase however shows an invariant Tg suggesting that the grafting and/or crosslinking effect overweighs the molecular weight effect. The observed high impact strength has been correlated with the homogeneous 1-2 μ rubber particle size distribution, a comparatively sharp rubber Tg transition at lower temperature, and a much lower occluded polystyrene content in the dispersed phase.  相似文献   

13.
Core–shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core‐shell rubber particles were then blended with polystyrene to prepare PS/PB‐g‐PS blends with a constant rubber content of 20 wt%. PB‐g‐PS particles with a lower PB/PS ratio (≤70/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high‐impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1–3 µm rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub‐micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress‐whitening zone of blends with a PB/PS ratio of 70/30 in PB‐g‐PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation. Subsequently, a compression‐induced activation method was explored to compare the PS/PB‐g‐PS blends with commercial HIPS, and the result show that the toughening mechanisms of the two samples are different. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Compatibilization of polymer blends of high‐impact polystyrene (HIPS) and high‐density polyethylene (HDPE) blend by styrene/ethylene–butylene/styrene (SEBS) was elucidated. Polymer blends containing many ratios of HIPS and HDPE with various concentrations of SEBS were prepared. The Izod impact strength and elongation at break of the blends increased with increases in SEBS content. They increased markedly when the HDPE content was higher than 50 wt %. Tensile strength of blends increased when the SEBS concentration was not higher than 5 pphr. Whenever the SEBS loading was higher than 5 pphr, the tensile strength decreased and a greater decrease was found in blends in which the HDPE concentration was more than 50 wt %. The log additivity rule model was applied to these blends, which showed that the blends containing the HIPS‐rich phase gave higher compatibility at the higher shear rates. Surprisingly, the blends containing the HDPE‐rich phase yielded greater compatibility at the lower shear rates. Morphology observations of the blends indicated better compatibility of the blends with increasing SEBS concentration. The relaxation time (T2) values from the pulsed NMR measurements revealed that both polymer blends became more compatible when the SEBS concentration was increased. When integrating all the investigations of compatibility compared with the mechanical properties, it is possible to conclude that SEBS promotes a certain level of compatibilization for several ratios of HIPS/HDPE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 742–755, 2004  相似文献   

16.
The effect of particle size in high-impact polystyrene (HIPS) is difficult to determine because of a size polydispersity and changes in particle morphology during the HIPS synthesis process. In this study, poly(n-butyl acrylate) rubber core/polystyrene shell particles were made by emulsion polymerization methods such that the only difference was in particle diameter, which ranged from 0.4 to 6.2 μm. The latexes were subsequently incorporated into a polystyrene matrix to form a toughened composite that acted as a simple model for HIPS. Charpy impact energies (notched and unnotched) of the composites showed that there was no toughening for particle sizes less than 2μm in diameter. The optimal impact energy was obtained with particle diameters in the region of 2–3 μm at 8 wt % rubber loading. The results imply that craze stabilization is the most important aspect of the toughening process. A simple toughening model based on the crack opening displacement of craze breakdown between adjacent rubber particles is suggested, with interparticle distance as the most important variable. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Acrylonitrile-butadiene rubber having carboxylic acid groups (XNBR) and polystyrene having oxazoline groups, were melt blended in a Rheomix mixer under optimized conditions, The ratio of rubber to polystyrene phase was kept constant at 1:4 by weight. The concentration of the reactive oxazoline groups in the polystyrene phase was varied by mixing polystyrene (PS) with a copolymer of styrene and vinyl oxazoline (OPS). A torque rise observed during blending was found to be related to the concentration of oxazoline-carboxylic acid pairs. This torque rise, and independently measured increases in viscosity, both indicate inter-polymer crosslinkihg. Scanning electron microscopy was used to observe the morphology of the blends. Improved rubber phase dispersion was observed with increasing oxazoline concentration. Instrumented impact strength measurements were made using an unnotched Charpy technique. The plastic yielding was then quantified with the use of a ductility ratio. The impact strengths and ductility of the reactive blends are found to be up to 73% greater than those of the corresponding non-reactive blends. Increasing the OPS concentration beyond 5% results in decreasing impact strength, for as the compatibility increases, the rubber particle size decreases below an effective size for rubber toughening. Similar impact improvement is observed when the major PS phase is substituted with high impact polystyrene (HIPS) containing some OPS.  相似文献   

18.
Polybutadiene rubbers of well-defined and varying molecular weight were prepared by anionic polymerization and used in the preparation of mass-polymerized polystyrene blends. The particle size of the dispersed rubber phase was varied by (1) controlling the relative viscosity, at phase inversion, of the two liquid phases composed of polystyrene and polybutadiene in styrene monomer; (2) by varying the intensity of mixing, and (3) by adding preformed polystyrene to the prepolymer, prior to phase inversion. The mechanical and dynamic properties of the resulting blends are found to be determined mainly by the particle size of the dispersed rubber phase, independently from the method used to obtain such size. The weight fraction of rubber phase, rather than the weight fraction of rubber charged, is found to correlate with the blend modulus and may also affect its level of toughness. Low molecular weight rubbers are found capable of efficient blend reinforcement, if the excessively small rubber particle size obtained by conventional processes is enlarged by incorporation of preformed polystyrene prior to phase inversion.  相似文献   

19.
The dynamic mechanical properties of a series of high impact polystyrene (HIPS) with a rubber phase based on styrene and butadiene (SBR) were studied. The variation of E′ and tan δ as a function of initiator, chain transfer agent (CTA), and SBR concentration, as well as the polybutadiene (PB) content in SBR, during the synthesis of HIPS were evaluated. For the range of concentrations studied, it was found that E′ decreased with an increase in the initiator and/or CTA concentration, as well as with an increase in the SBR content in HIPS and PB content in SBR, independently of the type of rubber phase particle obtained. In the case of tan δ, it showed a minor peak at ?80 ± 10°C, which decreased in magnitude and shifted to lower temperatures with the initiator concentration, but increased with an increase in the PB content in the rubber phase. In addition, transmission electron microscopy (TEM) showed that in most cases the particle size of the rubber phase was between 0.15 and 0.25 μm, except for those HIPS samples that contained SBR with 90 wt% of PB, in which it was much larger (0.45–1.15 μm). In the latter case it was found that the modulus decreased with the PB content, and decreased further and perceptibly with increasing particle size. POLYM. ENG. SCI., 45:1288–1296, 2005. © 2005 Society of Plastics Engineers  相似文献   

20.
The phase partitioning of additives in polymer blends has a large impact on the performance of the blend. Therefore, it is necessary to be able to quantify the level of the additives in each phase. A 1H–NMR method is presented to determine the partitioning of additives between the rubber and rigid phases of a high‐impact polystyrene (HIPS) material. In one case, a HIPS material was modified with 2,6‐di‐tert‐butyl‐4‐methyl‐phenol (Ionol, CAS# 128‐37‐OMF) as a stabilizer for both phases. HIPS materials with varying levels of Ionol were melt‐blended by extrusion and the total level of additives was determined analytically for these standard materials. The 1H–NMR method was used to determine the level of Ionol in the poly(butadiene) rubber phase. The Ionol was found to preferentially partition into the rubber phase with a partition coefficient of about 2. A second example of the same concept, instead utilizing 13C–NMR, involved the analysis of the partition coefficient for both Tinuvin P and Tinuvin 770 (CAS# 2440‐22‐4 and 52829‐07‐9), partitioning between the rigid and rubber phases of an ethylene–propylene–diene‐modified (EPDM) toughened styrene–ran–acrylonitrile (SAN) copolymer. The partition coefficient was determined to be 0.5 for Tinuvin P and 1.3 for Tinuvin 770. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1963–1970, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号