首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral stationary phase (CSP) with cellulose derivatives was synthesized using the “grafting from” and “grafting to” methods. The “grafting to” method involves the bonding of a preformed end‐functionalized polymer to reactive surface amine groups on the silica gel. The “grafting from” involves the immobilization of initiator onto the aminated silica gel followed by atom transfer radical polymerization (ATRP) to generate the chiral polymer chains. The successful preparation of the CSP with cellulose derivatives prepared by ATRP was confirmed by FE‐SEM, XPS, EA, and thermal analysis. The chiral resolution of the CSP with cellulose derivatives was evaluated by high‐performance liquid chromatography using 10 racemates with various mobile phases that consisted of hexane/alcohol, hexane/THF, and hexane/chloroform. Furthermore, the CSP with cellulose derivatives prepared by “grafting from” and “grafting to” were compared and discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The synthesis of electrically Conducting Natural Rubber (CNR) nanoparticles from natural rubber (cis 1, 4 polyisoprene) by a simple chemical doping technique is reported for the first time. Much before the establishment of conjugation as a precondition for polymers to be conducting a typical nonconjugated polymer like cis 1,4 polyisoprene was shown to develop intrinsic conductivity on doping. However, the possibility of developing conducting nanoparticles of natural rubber by doping has never been explored. Doping of natural rubber solution with Antimony pentchloride is found to lead to the formation of nanosized rubber particles with improved thermal stability and lower degradation characteristics than that of pristine rubber. Transmission electron microscopy and Dynamic Light Scattering experiments revealed a highly uniform dispersion of the particles with sizes in the range of 4 nm. The doped nanoparticles are found to retain “rubbery” properties of natural rubber and therefore these can be rightly termed as Rubber Nano particles. The development of nanoparticles of rubber assumes great significance in that it would lead to hitherto unknown applications for natural rubber in micro applications‐like sensors, and optoelectronics devices to macro applications such as compatible reinforcing fillers for elastomers and plastics to replace conventional fillers like carbon particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The motion of solid particles and the “fish‐hook” phenomenon in an industrial classifying hydrocyclone of body diameter 355 mm is studied by a computational fluid dynamics model. In the model, the turbulent flow of gas and liquid is modeled using the Reynolds Stress Model, and the interface between the liquid and air core is modeled using the volume of fluid multiphase model. The outcomes are then applied in the simulation of particle flow described by the stochastic Lagrangian model. The results are analyzed in terms of velocity and force field in the cyclone. It is shown that the pressure gradient force plays an important role in particle separation, and it balances the centrifugal force on particles in the radial direction in hydrocyclones. As particle size decreases, the effect of drag force whose direction varies increases sharply. As a result, particles have an apparent fluctuating velocity. Some particles pass the locus of zero vertical velocity (LZVV) and join the upward flow and have a certain moving orbit. The moving orbit of particles in the upward flow becomes wider as their size decreases. When the size is below a critical value, the moving orbit is even beyond the LZVV. Some fine particles would recircuit between the downward and upward flows, resulting in a relatively high separation efficiency and the “fish‐hook” effect. Numerical experiments were also extended to study the effects of cyclone size and liquid viscosity. The results suggest that the mechanisms identified are valid, although they are quantitatively different. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

4.
An innovative method to control shrinkage in polymer blends, by using N,N‐dimethyl‐p‐toluidine to produce phase separation in an acrylic system, was applied to synthesize polymer blends from polymethyl methacrylate (PMMA) and polytriethylene glycol dimethacrylate (PTEGDMA). The morphology of several compositions, as analyzed by scanning electron microscopy, reveals microdomains as a function of the specific composition, in contrast to conventional MMA–TEGDMA copolymers synthesized by thermal decomposition of benzoyl peroxide, used here as reference materials. Micro‐Raman and DSC analyses were also carried out to support the electron microscopy results as well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1254–1260, 2004  相似文献   

5.
Depending on the processing conditions in liquid crystal (LC) display manufacturing, LC/polymer composite films may exhibit unusual properties with respect to the compositional and phase behavior of the LC constituents. In particular, we have observed extraordinary large shifts of phase transition temperatures in LC/polymer composites, which can not be explained by preferential solvation or adsorption. Therefore, the influence of real manufacturing conditions such as thermal stress, storage in vacuum, and UV irradiation on the nematic–isotropic (n–i) transition temperatures of commercial nematic mixtures was investigated. Shifts of the clearing temperature of up to 88 K, presumably due to partial evaporation or UV degradation, were observed. Furthermore, we found that annealing may lead to the replacement of the nematic phase by the smectic A phase at room temperature in both LC/polymer composites and pure LC samples. Among the tested commercial LC blends, the mixtures E7, MLC‐6650, and L101 showed the smallest stress effects. Practical consequences of our results are discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Inorganic–organic hybrid copolymers are promising materials where the size of the inorganic/organic domains, the phase continuity and the interface between the domains play an important role in their behavior. Two types of hybrid copolymers composed of 3‐butynoate‐substituted zirconium‐oxoclusters covalently bonded to a (3‐mercaptopropyl)trimethoxysilane or a vinyltrimethoxysilane matrix are investigated in bulk. Their properties are directly correlated with the degree of condensation of the silanes and the alkyne‐3‐mercaptopropyl or alkyne‐vinyl interface. Both copolymers show storage moduli and glass‐transition temperatures (TgG) above 130 MPa and 230°C. However, the more impressive results are achieved with the (3‐mercaptopropyl)trimethoxysilane copolymer where a TgG of about 300°C holds over six dynamical mechanical spectroscopy analyses. In addition to their excellent thermo‐mechanical proprieties, the copolymers show unreacted 3‐mercaptopropyl or vinyl groups which could be employed either in direct usage of the materials or for post‐functional modifications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
ABSTRACT Alcohol‐acetone‐cellulose acetate phase diagrams incorporated with methanol, ethanol, and isopropanol as nonsolvents are calculated according to a new form of the Flory–Huggins equation. Nonsolvent–cellulose acetate interaction parameters are measured by swelling experiments. Concentration‐dependent nonsolvent–solvent interaction parameters are obtained by vapor–liquid equilibrium and the Wilson equation. It is shown that alcohol is a week coagulant compared with water, and water > methanol > ethanol > isopropanol for cellulose acetate. The phase diagrams characteristic of acetone‐cellulose acetate combined with water, methanol, ethanol, and isopropanol as nonsolvents is different, which leads to the different morphological structure of a cellulose acetate membrane. The structure of a water coagulated membrane has large macrovoids from liquid–liquid phase separation. A methanol coagulated membrane has a honeycomb‐like structure from spinodal microphase separation. An ethanol or isopropanol coagulated membrane has a thicker, dense top layer from the delay time phase separation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1650–1657, 2001  相似文献   

8.
Carboxyl‐functionalized magnetic nanogel was synthesized by facile “green” photochemical method. A possible mechanism of photochemical synthesis was proposed. Effects of irradiation time and volume of monomer dropped on the hydrodynamic diameter of the magnetic nanogel were investigated by photo correlation spectroscopy. The image of atomic force microscopy presented that the magnetic nanogel was with loosed structure. X‐ray diffraction analysis showed that UV irradiation did not induce phase change of Fe3O4. Superparamagnetic behaviors were retained for Fe3O4 while slightly reducing the value of saturation magnetization for surface coating. High magnetic content of (as high as 85%) and strong magnetization of Fe3O4 guaranteed that the magnetic nanogel was susceptive to external applied magnetic field. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Strategies to mitigate the expected “cellulose gap” include increased use of wood cellulose, fabric reuse, and recycling. Ionic liquids (ILs) are employed for cellulose physical dissolution and shaping in different forms. This review focuses on the regeneration of dissolved cellulose as nanoparticles, membranes, nonwoven materials, and fibers. The solvents employed in these applications include ILs and alkali solutions without and with additives. Cellulose fibers obtained via the carbonate and carbamate processes are included. Chemical recycling (CR) of polycotton (cellulose plus poly(ethylene terephthalate)) is addressed because depending on the recycling approach employed, this process is akin to regeneration. The strategies investigated in CR include preferential dissolution or depolymerization of one component of the blend, and separation of both components using ILs. It is hoped that this review focuses the attention on the potential applications of regenerated cellulose from its solutions and contributes to the important environmental issue of recycling of used materials.  相似文献   

10.
We have demonstrated that simple sodium salts can completely reverse the product ratios of the Passerini reaction in aqueous media. Furthermore, the use of the “salting‐in” salt and a small excess of the nucleophile gives significantly higher yields than the use of the saturated solution of the nucleophile alone.  相似文献   

11.
12.
13.
14.
Eco‐friendly and inexpensive “ green” nanocomposites with enhanced functional performances were developed by combining nanoscale hydroxyapatite (HA) synthesized from eggshell waste (nEHA) and protein‐based polymer extracted from defatted soybean residues. nEHA was synthesized from chicken eggshells using an energy efficient microwave‐assisted wet chemical precipitation method. Transmission electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy studies confirmed the nanometer scale (diameter: 4–14 nm and length: 5–100 nm) of calcium‐deficient (Ca/P ratio ~1.53) needle‐like HA. Uniform dispersion of nEHA in soy protein isolate (SPI) solution was obtained by modifying nEHA surface using a polyelectrolyte (sodium polyacrylate) dispersant via irreversible adsorption. Green nanocomposite films were prepared from SPI and surface‐modified nEHA with the help of a natural plasticizer “glycerol” by solution casting. Significant improvements in tensile modulus and strength were achieved owing to the inclusion of uniformly dispersed nEHA in SPI sheets. Overall, this work provides a green pathway of fabricating nanocomposites using naturally occurring renewable polymer and inorganic moieties from eggshell waste that emphasizes the possibilities for replacing some petroleum‐based polymers in packaging and other applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43477.  相似文献   

15.
The use of higher‐functionality oligomers of glutaraldehyde on network formation was investigated and compared with glutaraldehyde monomer in step‐growth reactions. The effect of using such oligomers in network formation depends on the stoichiometry, which alters either the branching or both the branching and crosslinking of the network. This was demonstrated in the properties of poly(vinyl alcohol) (PVA) networks crosslinked with glutaraldehyde using cryogenic scanning electron microscopy, water swelling studies, and protein transfer across membranes. General guidelines were given for the proper use of glutaraldehyde solutions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 780–792, 2005  相似文献   

16.
In this study, the monodisperse–macroporous particles produced by a relatively new polymerization protocol, the so‐called, “modified seeded polymerization,” were used as column‐packing material in the reversed phase chromatography (RPC) of proteins. The particles were synthesized in the form of styrene‐divinylbenzene copolymer approximately 7.5 μm in size. In the first stage of the synthesis, the monodisperse polystyrene particles 4.4 μm in size were obtained by dispersion polymerization and used as the “seed latex.” The seed particles were swollen by a low‐molecular‐weight organic agent and then by a monomer mixture. The monodisperse–macroporous particles were obtained by the polymerization of monomer mixture in the seed particles. In the proposed polymerization protocol, the number of successive swelling stages was reduced with respect to the present techniques by the use of sufficiently large particles with an appropriate average molecular weight as the seed latex. A series of particles with different porosity properties was obtained by varying the monomer/seed latex ratio. The separation behavior of HPLC columns including the produced particles as packing material was investigated in the RPC mode using a protein mixture including albumin, lysozyme, cytochrome c, and ribonuclease A. The chromatograms were obtained with different flow rates under an acetonitrile–water gradient. The theoretical plate number increased and chromatograms with higher resolutions were obtained with the particles produced by using a lower monomer/seed latex ratio. The separation ability of the column could be protected over a wide range of flow rates (i.e., 0.5–3 mL/min) with most of the materials tested. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 607–618, 2004  相似文献   

17.
The term “alexandrite effect” is used in gemology to describe a distinct change of color appearance when a gemstone is switched from daylight to incandescent light. Gemstones that exhibit the alexandrite effect can actually be divided into four categories based upon the value of the calculated absolute hue-angle change of the material under different pairs of illuminants. the alexandrite effect is a non-color-constancy phenomenon. It can be explained by a combination of both chromaticity adaptations to the different light sources, and vision system responses to the spectral distribution of the light emitted by alexandrite effect gemstones when they are illuminated alternatively by the different light sources.  相似文献   

18.
19.
Injection molding thermotropic liquid‐crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. “Skin‐core” morphologies are often observed in TLCP moldings. Given that both “core” and “skin” orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two‐dimensional wide‐angle X‐ray scattering (WAXS) in transmission and near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4′‐dihydroxy‐α‐methylstilbene (DHαMS)‐based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on‐ and off‐ axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
The “end of the vortex” (EoV) phenomenon, a flow instability that plays a crucial role in cyclone design and operation is studied in this article. In the experimental part of the study, tests were carried out to understand the origin and nature of the EoV and to study the effects of the flowrate through, and the length of, the cylindrical cyclone on the EoV. In the theoretical part, computational fluid dynamics (CFD) models, in agreement with the geometrical configurations and operating conditions used in the present and earlier experimental studies, were constructed and investigated. Three‐dimensional simulations were carried out using the large eddy turbulence model with the commercial CFD package Star‐CD. Bending of the vortex core to the wall of the vessel and its precessional motion, constituting the phenomenon of the EoV, was observed in the simulations in most geometries. The results are in a good agreement not only with the present experimental results but also with previous experimental observations. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号