首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphology–property relationships for simultaneously biaxially stretched films and heatset with fixed dimensions in the temperature range of 100–240°C have been studied. The observed transition in various properties at 180°C can be explained on the basis of microstructural changes caused by competition among several processes, such as crystallization, solid-state thickening, melting, and molecular relaxation as well as by melting and recrystallization. The resulting structures and, thereby, the properties are different in temperature Regime-II (Tg to Tmax) and Regime-III (Tmax to Tm). In Regime-II, the high rate of crystallization compared to the rate of molecular relaxation develops a constrained amorphous phase, whereas the predominant melting and recrystallization process in Regime-III generates the relaxed amorphous phase. The structural reorganization during heat treatment is almost the same for uniaxially oriented film, fibers, and biaxially oriented films prepared under similar processing conditions. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐4,4′‐ bibenzoate) (PETBB) are prepared by coextrusion. Analysis by 13C‐NMR spectroscopy shows that little transesterification occurs during the blending process. Additional heat treatment of the blend leads to more transesterification and a corresponding increase in the degree of randomness, R. Analysis by differential scanning calorimetry shows that the as‐extruded blend is semicrystalline, unlike PETBB15, a random copolymer with the same composition as the non‐ random blend. Additional heat treatment of the blend leads to a decrease in the melting point, Tm, and an increase in glass transition temperature, Tg. The Tm and Tg of the blend reach minimum and maximum values, respectively, after 15 min at 270°C, at which point the blend has not been fully randomized. The blend has a lower crystallization rate than PET and PETBB55 (a copolymer containing 55 mol % bibenzoate). The PET/PETBB55 (70/30 w/w) blend shows a secondary endothermic peak at 15°C above an isothermal crystallization temperature. The secondary peak was confirmed to be the melting of small and/or imperfect crystals resulting from secondary crystallization. The blend exhibits the crystal structure of PET. Tensile properties of the fibers prepared from the blend are comparable to those of PET fiber, whereas PETBB55 fibers display higher performance. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1793–1803, 2004  相似文献   

3.
The dichroic behavior of PET film dyed at 70°C with Disperse Red 17 or Disperse Yellow 7 was investigated in the temperature range 20–200°C with a view to studying the changes in amorphous region of PET at high temperatures. The dichroic orientation factor D versus temperature plot is expressed by a straight line with negative slope; two breaks appear at 80 (Tg) and 120°C. So long as the amorphous structure does not change irreversibly, the values of D change reversibly with the temperature. Hence, if a change in D after heating is observed at room temperature, it is evidence that an irreversible change occurred in the amorphous structure during the heating. The break at 120°C is a new amorphous transition point of PET existing along with Tg, although the Tg can hardly be observed after the cold crystallization; some phenomena reported in the literature are proposed as evidence.  相似文献   

4.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The surface crystallization behavior of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) spin‐coated thin films was compared by means of atomic force microscopy (AFM) with an in situ heating stage. As the films were heated up stepwise, characteristic surface crystals appeared at a crystallization temperature (Tc) in the near‐surface region which is about 15 °C under the bulk Tc, and were replaced by bulk crystals when the temperature was increased to the bulk Tc. In the case of films whose thickness is less than 70 nm (PET) and 60 nm (PEN), significant increases in the bulk Tc were observed. Scanning force microscopy (SFM) force‐distance curve measurements showed that the glass transition temperature (Tg) of the near‐surface region of PET and PEN were 22.0 and 26.6 °C below their bulk Tg (obtained by DSC). After the onset of surface crystallization, edge‐on and flat‐on crystals appeared at the free surface of PET and PEN thin films, whose morphologies are very different to those of the bulk crystals. Although the same general behavior was observed for both polyesters, there are significant differences both the influence of the surface and substrate on the transition temperatures, and in morphology of the surface crystals. These phenomena are discussed in terms of the differences in the mobility of polymer chains near the surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44269.  相似文献   

6.
The melting, isothermal and nonisothermal crystallization behaviors of poly(3‐hydroxybutyrate) (PHB) have been studied by means of temperature modulated differential scanning calorimetry (TMDSC) and conventional DSC. Various experimental conditions including isothermal/annealing temperatures (80, 90, 100, 105, 110, 120, 130, and 140°C), cooling rates (2, 5, 10, 20, and 50°C/min) and heating rates (5, 10, 20, 30, 40, and 50°C/min) have been investigated. The lower endothermic peak (Tm1) representing the original crystals prior to DSC scan, while the higher one (Tm2) is attributed to the melting of the crystals formed by recrystallization. Thermomechanical analysis (TMA) was used to evaluate the original melting temperature (Tmelt) and glass transition temperature (Tg) as comparison to DSC analysis. The multiple melting phenomenon was ascribed to the melting‐recrystallization‐remelting mechanism of the crystallites with lower thermal stability showing at Tm1. Different models (Avrami, Jeziorny‐modified‐Avrami, Liu and Mo, and Ozawa model) were utilized to describe the crystallization kinetics. It was found that Liu and Mo's analysis and Jeziorny‐modified‐Avrami model were successful to explain the nonisothermal crystallization kinetic of PHB. The activation energies were estimated in both isothermal and nonisothermal crystallization process, which were 102 and 116 kJ/mol in respective condition. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42412.  相似文献   

7.
Chemical‐modified pulps were synthesized from four types of waste pulps (Pulp1–4) and succinic anhydride (SAn) or maleic anhydride (MAn). The solubility of the modified pulps was evaluated in common organic solvents, and their thermal properties were investigated by DSC measurement. The solubility of the modified pulps increased with an increasing degree of substitution (DS). However, no Tg or Tm of these modified pulps was confirmed. Pulps and modified pulps were graft‐polymerized with ε‐caprolactone (CL) in bulk and in DMAc/LiCl. Although the solubility of the graft copolymers was similar to modified pulps, some graft copolymers showed a Tg by the introduction of CL units. In the bulk, graft copolymers obtained from modified pulps and nonmodified pulps showed a Tg of about 75°C and no Tg, respectively. In DMAc/LiCl, the obtained graft copolymers from both modified and nonmodified pulps exhibited a Tg of 95–110°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2059–2065, 2003  相似文献   

8.
The copolyester was characterized as having 71 mol % trimethylene terephthalate units and 29 mol % ethylene terephthalate units in a random sequence according to the NMR spectra. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics in the temperature range (Tc) from 130 to 170°C. The melting behavior after isothermal crystallization was studied using DSC and temperature‐modulated DSC by varying the Tc, the crystallization time, and the heating rate. The DSC thermograms and wide‐angle X‐ray diffraction patterns reveal that the complex melting behavior involves melting‐recrystallization‐remelting and different lamellar crystals. As the Tc increases, the contribution of recrystallization gradually falls and finally disappears. A Hoffman‐Weeks linear plot yields an equilibrium melting temperature of 198.7°C. The kinetic analysis of the growth rates of spherulites and the change in the morphology from regular to banded spherulites indicate that a regime II→III transition occurs at 148°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Novel copolyesters have been prepared by melt mixing poly(ethylene terephthalate) (PET) with an ethoxylated bisphenol S, with the aim to prepare new polyesters with increased Tg, to be used in a wider range of temperatures with respect to neat PET. No side reactions occur during the synthesis of the samples, as proved by NMR analysis. The insertion of the bisphenol S (sulfonyldiphenol) groups does not significantly alter the thermal stability of PET. The thermal analysis showed that Tm and crystallization rate of the copolymers decreased with incasing co‐unit content. The Tg of the copolyesters can be increased by bisphenol S insertion, up to 40°C higher with respect to neat PET, that allows the use of amorphous PET in a wider range of applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Two series of samples, one of PET and another of PBT, were received after chain extension at different reaction times with two new chain extenders (diimidodiepoxides). These samples showed different intrinsic viscosity and degree of branching or crosslinking. The effect of this differentiation on thermal properties was studied by thermomechanical analysis (TMA). The parameters studied were the glass transition temperature (Tg), melting temperature (Tm), and the linear expansion coefficient (α). It is remarkable that in the case of PET amorphous or semicrystalline samples, two peaks appeared next to the Tg in the TMA thermogram. The first peak appeared at a temperature very close and lower to the Tg, and the other peak, at higher temperature into the “cold crystallization region.” The presence of two such peaks was not detected in the DSC thermogram of PET samples either in the TMS or DSC thermograms of PBT. The Tg values were found to agree to within ±1°C of those obtained from DSC; on the contrary, the Tm values varied significantly from those received from DSC. The linear expansion coefficient of samples was found to increase with the degree of chain extension. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

12.
Vinyl‐addition polymerization of norbornene was accomplished by two novel dinuclear diimine nickel dichloride complexes in combination with methylaluminoxane (MAO). The activities were moderate. The catalyst structure, Al/Ni molar ratio, solvents, and polymerization temperature all affected the catalytic activities. The obtained polynorbornenes were characterized by 1H‐NMR, 13C‐NMR, FTIR, DSC, WAXD, and intrinsic viscosity measurements. The vinyl‐addition polymers were amorphous but with a short‐range order and high packing density. The polynorbornenes showed glass transition temperatures (Tg) above 240°C and decomposed above 400°C. The catalyst structure and polymerization conditions have effects on the molecular weight and the microstructure of the polymers. The nickel complex with bulkier substituents in the ligand produced polynorbornene with a higher packing density and higher regularity and, therefore, with higher Tg. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3273–3278, 2003  相似文献   

13.
Melting gels are hybrid gels that have the ability to soften and flow at around 100°C for some combinations of mono‐ and di‐substituted alkoxysiloxanes, where substitutions are either all aromatic or all aliphatic. In this study, melting gels were prepared using phenyltriethoxysilane (PhTES) and dimethyldiethoxysilane (DMDES), meaning both an aromatic and aliphatic substitution. Differential scanning calorimetry was performed to identify glass‐transition temperatures, and thermal gravimetric analysis coupled with differential thermal analysis (TGA‐DTA) was performed to measure weight loss. The glass‐transition temperatures (Tg) ranged from ?61°C to +5.6°C, which are between the values in the methyl only system, where all Tg values are less than 0°C, and those values in the phenyl only system, where Tg values are greater than 0°C. The Tg decreased with an increase in the DMDES fraction. Below 450°C, the gels lost little weight, but around 600°C there was a drop in weight. This temperature is lower than the temperature for gels prepared with only aromatic substitutions, but higher than that for gels prepared with only aliphatic substitutions. Final heat treatment was carried out at 150°C for the gel with 80%PhTES‐20%DMDES (in mol%), and the consolidation temperature increased with increasing DMDES content to 205°C for the gel with 50%PhTES‐50%DMDES. After this heat treatment, the melting gels no longer soften.  相似文献   

14.
The miscibility, melting and crystallization behaviour of poly[(R)‐3‐hydroxybutyrate], PHB, and oligo[(R,S)‐3‐hydroxybutyrate]‐diol, oligo‐HB, blends have been investigated by differential scanning calorimetry: thermograms of blends containing up to 60 wt% oligo‐HB showed behaviour characteristic of single‐phase amorphous glasses with a composition dependent glass transition, Tg, and a depression in the equilibrium melting temperature of PHB. The negative value of the interaction parameter, determined from the equilibrium melting depression, confirms miscibility between blend components. In parallel studies, glass transition relaxations of different melt‐crystallized polymer blends containing 0–20 wt% oligo‐HB were dielectrically investigated between ?70 °C and 120 °C in the 100 Hz to 50 kHz range. The results revealed the existence of a single α‐relaxation process for blends, indicating the miscibility between amorphous fractions of PHB and oligo‐HB. © 2002 Society of Chemical Industry  相似文献   

15.
The effect of annealing on the microstructure and melting behavior of a solution‐cast polylactide (PLA) stereocomplex (sc) was systematically investigated by differential scanning calorimetry and small‐angle X‐ray scattering. A preorder state, an intermediate form between the amorphous and crystalline states, was found in the solution‐cast poly(l ‐lactide)–poly(d ‐lactide) blend. When the annealing temperature (Ta) was below 220 °C, a part of the preorder state directly formed thicker sc crystallites; these corresponded to the second melting peak, which appeared around 250 °C during the heating process. Although the rest melted and became the amorphous phase, it formed a thinner lamella under the restriction of the unmelted initial sc crystallites during annealing; the melting process of this lamella was parallel to that of the new melting peak, which appeared around 220 °C. The melting of the initial crystal formed as the solvent volatilized corresponded to the range of the first melting temperature around 230 °C. When Ta was above 220 °C, the preorder state melted completely, and the initial crystal experienced perfection process. Furthermore, the highest melting temperature of PLA sc (254.1 °C, with a fusion enthalpy of 125.5 J/g) was obtained when Ta was 235 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44626.  相似文献   

16.
Copolyetheresteramides with bisesterdiamide units of a uniform length were synthesized in the current study, and the dynamic mechanical and elastic properties of the copolymers produced were studied. Diols are used to extend the length of uniform bisesterdiamide hard segments. Extenders have a twofold effect: increasing the lamellar thickness of the bisesterdiamide crystals and having the ability to independently adjust the ratio between the hard and soft segment. It was found that polymers containing 1,12‐dodecanediol as an extender possess a multiphase structure. Two glass‐transition temperatures (Tg) were observed along with a very broad melting transition. The Tg at about ?70°C was found to originate from the amorphous polyether phase, the Tg at about 140–175°C was attributed to a glassy aramid‐1,12‐dodecanediol phase. The broad melting transition was caused by the presence of the wide variety of lamellar sizes. This multiphase morphology is probably results from the liquid–liquid demixing of an aramid–polyether and from the aramid‐extender phase. Polymers containing 1,12‐dodecanediol and 13 wt % aramid had an improved elasticity compared to similar polymers without an extender. It is thought this is the result of large isolated, spherically shaped domains become less plastically deformed than the crystalline network of thin lamellae. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1605–1613, 2001  相似文献   

17.
Because of its slowly crystallizing nature, poly(ethylene terephthalate) (PET) can be supercooled into an amorphous glass by rapid quenching. Upon reheating between Tg and Tm, the amorphous PET are subjected to two competing processes: rubber softening and crystallization. Fusion bonding of two such crystallizable amorphous polymer sheets in this processing temperature window is thus a complex process, different from fusion of purely amorphous polymer above Tg or semicrystalline polymer above Tm. In this study, the interfacial morphological development during fusion bonding of supercooled PET in the temperature window between Tg and Tm was studied. A unique double‐zone interfacial morphology was observed at the bond. Transcrystals were found to nucleate at the interface and grow inward toward the bulk and appeared to induce nucleation in the bulk to form a second interfacial region. The size and morphology of the two zones were found to be significantly affected by the fusion bonding conditions, particularly the fusion temperature. The fusion bonding strength determined by the peeling test was found to be significantly affected by the state of crystallization and the morphological development at the bonding interface. Based on the interfacial morphology observed and the bonding strength measured, a fusion bonding mechanism of crystallizable amorphous polymer was proposed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Poly(methyl methacrylate)/montmorillonite (MMT) nanocomposites were prepared by in situ bulk polymerization. The results showed that the silicone coupling agent affected the structure and properties of hybrid materials. XRD analysis showed that the dispersion of clay in nanocomposites with silicone‐modified organophilic MMT was more ordered than that in nanocomposites with unmodified organophilic MMT. The glass transition temperature (Tg) of the nanocomposites was 6–15°C higher and the thermal decomposition temperature (Td) was 100–120°C higher than those of pure PMMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2256–2260, 2003  相似文献   

19.
Thermally stimulated current (TSC) was used to study molecular relaxations in polyethylene terephthalate (PET) bottles. Unstretched PET film, which was used as a model for the bottle preform, exhibited two peaks at 77 and 90°C that correspond to the α and ρ relaxation processes, respectively. The bottles exhibited only the ρ relaxation, which is located within the temperature range for blow molding PET bottles. The α peak is associated with the main glass transition temperature (Tg) and the ρ peak may be associated with a second Tg. The second Tg is attributed to a “constrained state,” which shows dipolar behavior. Heat‐shrinkage behavior was examined at 90°C. The maximum TSC (Im) of the ρ peak decreased with increasing heat set temperature, and with decreasing shrinkage. Bottles blown at 113°C showed a lower Im and shrinkage than those blown at 103°C for equivalent heat set temperatures. The higher blowing temperature allowed a higher stretch speed that produced higher crystallinity bottles with self‐heat generation during rapid deformation. A relationship between the shrinkage mechanism and the dipole relaxation was proposed.  相似文献   

20.
Taking advantage of a melt polycondensation process, a series of copolyesters composed of pure terephthalate acid (PTA), ethylene glycol (EG), and 1,3‐propanediol (1,3‐PDO) were synthesized. The component, molecular weight, molecular weight distribution, and thermal properties of the copolymers were characterized. The results show that the contents of trimethylene terephthalate (TT) units in the resulting copolyesters are higher than PDO compositions in original diol. Oligomer content in the copolyesters varies with the compositions and attains a minimum value when the TT ingredient is 49.52 mol %. The glass transition temperature (Tg) of the copolyesters varies from 78.5°C for PET (polyethylene terephthalate) to 43.5°C for PTT (polytrimethylene terephthalate) and decreases monotonically with the components. The copolyesters are amorphous copolymers when TT content is in the range of 32.4–40.8 mol %, as calculated from the melting enthalpy (ΔHm) measured via differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1511–1521 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号