首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

2.
A new strategy was used to prepare a semi‐interpenetrating polymer network (semi‐IPN)–like poly(N‐isopropylacrylamide) (PNIPAAm) polymeric hydrogel, consisting of either low (2300) or high (33,000) molecular weight linear PNIPAAm chains and the crosslinked PNIPAAm network. The properties of the resulting PNIPAAm hydrogels were characterized by DSC and SEM as well as their swelling ratios at various temperatures, the deswelling in hot water (48°C), and the oscillating shrinking–swelling properties within small temperature cycles. It was found that the deswelling rate of these semi‐IPN–like PNIPAAm hydrogels was improved if the molecular weight and/or composition of the linear PNIPAAm chains within the semi‐IPN–like PNIPAAm hydrogels were increased. This improved deswelling rate was attributed to the fast response nature of the linear PNIPAAm chains and the increased pore number in the matrix network, which provided numerous water channels for the water to diffuse out during the deswelling process at a temperature above the lower critical solution temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1935–1941, 2003  相似文献   

3.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Temperature‐ and pH‐responsive semi‐interpenetrating polymer network (semi‐IPN) hydrogels constructed with chitosan and polyacrylonitrile (PAN) were studied. The characterizations of semi‐IPN hydrogels were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). IPN hydrogels exhibited a relatively high swelling ratio, 23.31%–145.20% at room temperature. The swelling ratio of hydrogels depends on pH and temperature. DSC was used to determine the amount of free water in IPN hydrogels. The amount of free water increased with increasing chitosan content in the semi‐IPN hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2011–2015, 2003  相似文献   

5.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

6.
Semi‐interpenetrating polymer network (IPN) hydrogels, with acrylic acid (AA) and poly(diallydimethylammonium chloride) (PDMDAAC), were constructed by a sequential IPN method. The characterizations of the IPN hydrogels were investigated by FTIR, DTA, and swelling tests under various conditions. The prepared semi‐IPN hydrogels exhibited relatively high swelling capacity, in the range of 477–630 g/g at 25°C. The results show that the swelling capacity of AA/PDMDAAC semi‐IPN hydrogels was pH and temperature dependent. Swelling behaviors were also studied in the different salt solutions. Swelling kinetic parameters are given. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 345–350, 2007  相似文献   

7.
A series of novel semi‐interpenetrating polymer networks (IPNs) composed of poly[(acrylamide)‐co‐(sodium acrylate)] with varying amounts (5, 10, and 15 wt%) of poly[(vinylsulfonic acid), sodium salt] was synthesized. The semi‐IPN hydrogels were characterized by infrared spectroscopy. The swelling behavior of these IPNs was studied in distilled water/physiological solutions/buffer solutions/salt solutions. As the amount of poly[(vinylsulfonic acid), sodium salt] increased in the network, the swelling capacity of the semi‐IPNs increased considerably. The swelling and diffusion characteristics such as water penetration velocity (v), diffusion exponent (n), and diffusion coefficient (D) were calculated in distilled water, as well as in other physiological solutions. The highest swelling capacity was noted in urea and glucose solutions. The semi‐IPN hydrogels followed non‐Fickian diffusion behavior in water and physiological fluids, whereas Fickian behavior was observed in buffer solutions. The stimuli‐responsive characteristics towards physiological fluids, salt concentration, and temperature of these semi‐IPN hydrogels were also investigated. The swelling behavior of the semi‐IPNs decreased markedly with an increase of the concentration of the salt solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Temperature‐responsive interpenetrating polymer network (IPN) hydrogels constructed with poly(vinyl alcohol) and poly(diallyldimethylammonium chloride) using the sequential IPN method were studied. The characteristics of IPN hydrogels were investigated using the dynamic vapor sorption system. IPN hydrogels exhibited a relatively high sorption ratio, 180–360% at room temperature. The sorption ratio of hydrogels depended on temperature. Diffusion coefficients were calculated according to the Fickian Law at several temperatures. The apparent activation energy was 5.43 kJ mol?1, which corresponds to typical diffusion processes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1389–1392, 2003  相似文献   

9.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

10.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005  相似文献   

11.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

12.
Temperature‐ and pH‐responsive interpenetrating polymer network (IPN) hydrogels, with sodium alginate (SA) and poly(diallydimethylammonium chloride) (PDADMAC), constructed by a sequential IPN method, were studied. The characterizations of the IPN hydrogels were investigated by FTIR, DSC, and swelling tests under various conditions. The prepared IPN hydrogels exhibited relatively high swelling ratios, in the range of 380–690%, at 25°C. The swelling ratios of SA/PDADMAC IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the freezing and nonfreezing water contents of the hydrogels. The amount of free water increased with the increasing PDADMAC content of the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3705–3709, 2004  相似文献   

13.
Semi‐interpenetrating polymer networks (semi‐IPNs), as polymer hydrogels composed of chitosan and poly(hydroxyethyl methacrylate) (PHEMA), exhibiting electrical‐sensitive behavior, were prepared. The swelling behavior of the chitosan/PHEMA hydrogels was studied by immersing the gels in various concentrations of aqueous NaCl solution. The electrical responses of the semi‐IPN hydrogel, in applied electric fields, were also investigated. When the semi‐IPN hydrogels were swollen, where one electrode was placed in contact with the gel and the other fixed 30 mm apart from one, they exhibited bending behavior on the application of an electric field on a contact system. The electroresponsive behavior of the present semi‐IPN was also affected by the electrolyte concentration of the external solution. The semi‐IPN also showed various degrees of increased bending behavior depending on the electric stimulus. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 915–919, 2004  相似文献   

14.
Temperature‐sensitive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide) were successfully prepared. The structure and properties were systematically characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis, and the swelling and deswelling behavior was also investigated. It was found that the hydrogels had good miscibility, thermal stability and temperature sensitivity, and the lower critical solution temperature was ca 32 °C. Changing the content of soy protein or crosslinker could be used to control the swelling behavior, water retention and network structure of the IPN hydrogels. The results show that the novel IPN hydrogels may be of potential interest in drug delivery systems. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
This article presents the preparation of the hydrogel of poly(N‐propionylethyleneimine) and its interpenetrating polymer network (IPN) hydrogel containing polyacrylamide by means of γ‐ray radiation and a study of the phase transition temperature of these hydrogels. As a result, the hydrogel of the crosslinked poly(N‐propionylethyleneimine) exhibited swelling below and shrinking above the phase transition temperature (about 61°C), as well as the lower critical solution temperature (LCST) of the liner polymer–water system. The experiment also showed that the LCST of the IPN hydrogel could be adjusted by the incorporation of the second component polyacrylamide. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2457–2461, 1999  相似文献   

16.
Amino semitelechelic poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by radical polymerization with aminoethanethiol hydrochloride as a chain‐transfer agent. Semi‐interpenetrating polymer network (semi‐IPN) hydrogels, composed of alginate and amine‐terminated PNIPAAm, were prepared by crosslinking with calcium chloride. From the swelling behaviors of semi‐IPNs at various pH's and Fourier transform infrared spectra at high temperatures, the formation of a polyelectrolyte complex was confirmed from the reaction between carboxyl groups in alginate and amino groups in modified PNIPAAm. Semi‐IPN hydrogels reached an equilibrium swelling state within 24 h. The water state in hydrogels, investigated by differential scanning calorimetry, showed that sample CAN55 [alginate/PNIPAAm (w/w) = 50/50] exhibited the lowest equilibrium water content and free water content among the hydrogels tested, which was attributed to its more compact structure compared to other samples and the high content of interchain bonding within the hydrogels. Alginate/PNIPAAm semi‐IPN hydrogels exhibited a reasonable sensitivity to the temperature, pH, and ionic strength of swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1128–1139, 2002  相似文献   

17.
A series of interpenetrating polymer networks (IPN) hydrogels with different compositions that based on xanthan gum (XG) and poly(aspartic acid) (PASP) were synthesized. The effects of various external surrounding stimuli, including pH, temperature, and ionic strength on XG–PASP hydrogels swelling properties were investigated. Chemical structural changes of the IPN hydrogels were characterized by Fourier transform infrared spectroscopy (FT‐IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and swelling ratio measurement. The swelling process was found to be a Fickian diffusion and reached swelling equilibrium quickly. It was found that the feed composition of PASP was an important factor that affected the properties of IPN hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS)/hyaluronic acid (HA) interpenetrating polymer network (IPN) hydrogels have been prepared by using the sequential‐IPN method. The IPN hydrogels exhibited swelling behavior in solutions at various pHs, in NaCl solutions, and under electrical DC stimulation. The IPN hydrogels were highly swollen in water, but lost much of their water capacity when transferred to solutions having a high ionic strength. The IPN hydrogels showed a significant responsive deswelling in an applied electric field. This behavior indicates the potential application of IPN hydrogels as biomaterials. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1731–1736, 2004  相似文献   

20.
Interpenetrating polymer network (IPN) hydrogels based on poly(ethylene oxide) and poly(methyl methacrylate) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone and ethylene glycol dimethacrylate as initiators and crosslinkers, respectively. The IPN hydrogels were analyzed for sorption behavior at 25°C and at a relative humidity of 95% using dynamic vapor sorption. The IPN hydrogels exhibited a relatively high equilibrium water content in the range of 13–68%. The state of water in the swollen IPN hydrogels was investigated using differential scanning calorimetry. The free water in the hydrogels increased as the hydrophilic content increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 258–262, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号