首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanosized polypyrrole–polystyrene (PPy–PS) composite particles were synthesized by the polymerization of pyrrole on PS nanoparticles in the presence of FeCl3. The PS nanoparticles were prepared from microemulsion polymerizations using the cationic nonpolymerizable surfactant cetyltrimethylammonium bromide (CTAB), the nonionic polymerizable surfactant ω‐methoxy[poly(ethylene oxide)40]undecyl α‐methacrylate (PEO–R–MA‐40), or the cationic polymerizable surfactant ω‐acryloyloxyundecyltrimethylammonium bromide (AUTMAB). For the latexes stabilized by CTAB, the resulting PPy–PS composite particles exhibited relatively poor colloidal stability and the pressed pellets exhibited relatively low electrical conductivities (~10?7–10?3 S cm?1). However, for the latexes stabilized by polymerizable surfactants, the resulting PPy–PS composite particles exhibited relatively good colloidal stability and relatively high conductivities (~10?5–10?1 S cm?1). The effect of polymerizable surfactants on the colloidal stability of composite particles and the conducting mechanism of the composites are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1360–1367, 2004  相似文献   

2.
Polypyrrole–Polymethylmethacrylate (PMMA + PPy) composite films were prepared electrochemically by means of codeposition at constant potential. The films were characterized by using Infrared spectroscopy, wide‐angle X‐ray diffraction analysis, and scanning electron microscopy. The appearance of standard and some new absorption bands for PPy and PMMA confirms the composite formation. The mechanical properties of the conducting PMMA+ PPy films were studied and found to be improved with respect to the control PPy films. The electrical conductivity of the PMMA + PPy film was measured by using standard four‐ and two‐probe methods. The conductivity of the films was found to depend on the pyrrole content. These conducting composites were further used as gas sensors by observing the change in the current when exposed to ammonia gas. The film gives a fast and reproducible response towards ammonia gas. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88:22–29, 2003  相似文献   

3.
Conducting polymer composites of polyethylene and polypyrrole (PE/PPy), polypropylene and polypyrrole (PP/PPy) and poly(methyl methacrylate) and polypyrrole (PPMA/PPy) were prepared by means of a chemical modification method resulting in a network-like structure of polypyrrole embedded in the insulating polymer matrix. The content of polypyrrole determined by elemental analysis varied from 0·25 to 17wt%. Electrical conductivity of compression-moulded samples depended on the concentration of polypyrrole and reached values from 1×10-11 to 1 S cm-1. The morphology of the composites and blends was studied by low-voltage scanning electron microscopy. The stability of PP/PPy composites was investigated by thermogravimetric analysis and by conductivity measurements during heating–cooling cycles. There was only a small drop in conductivity caused by the annealing of PP/PPy composites in air at temperatures up to 80°C. The results of thermogravimetric analysis showed a stabilizing effect of PPy on PMMA/PPy composites against thermal degradation. The antistatic properties of PMMA/PPy composites were demonstrated. © 1997 SCI.  相似文献   

4.
To prepare conducting polymer composites, porous polymethyl methacrylate (PMMA) particles with different specific surface areas were prepared by seeded emulsion polymerization and solvent extraction. The dried porous particles were imbibed with the oxidant solution and adsorbed pyrrole from a solution. The incorporation of pyrrole into the porous particles was achieved by chemical oxidative polymerization. The effects of various polymerization parameters on the electrical conductivity were systematically investigated. The important factors affecting conductivity were the porosity of the host polymer particles and the solvent polarizability. © 1998 SCI.  相似文献   

5.
Conducting polymers of alkylanilines, pyrrole, and their conducting composites were synthesized by oxidation polymerization. The oxidants used were KIO3 and FeCl3 for the polyalkylanilines and polypyrrole (PPy), respectively. Among the polyalkylanilines synthesized with KIO3 salt, the highest conductivity was obtained with poly(2‐ethylaniline) (P2EAn) with a value of 4.10 × 10?5 S/cm. The highest yield was obtained with poly(N‐methylaniline) with a value of 87%. We prepared the conducting composites (PPy/P2EAn and P2EAn/PPy) by changing synthesis order of P2EAn and PPy. The electrically conducting polymers were characterized by IR spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, and X‐ray diffraction spectroscopy. From the results, we determined that the properties of the composites were dependent on the synthesis order of the polymers. The thermal degradation temperature of PPy was observed to be higher than that of the other polymers and composites. We determined from X‐ray results that the structures of the homopolymers and composites had amorphous regions (88–95%) and crystal regions (5–12%). From the Gouy balance magnetic measurements, we found that the polymers and composites were bipolaron conducting mechanisms. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 241–249, 2006  相似文献   

6.
In this study, conducting banana fibers (BF) were obtained through in situ oxidative polymerization of pyrrole (Py) on the BF surface using ferric chloride hexahydratate (FeCl3·6H2O) as an oxidant. Suitable reaction conditions are outlined for the polymerization of Py: oxidant/monomer molar ratio, Py concentration and polymerization time of 2/1, 0.05 mol.L−1 and 30 min, respectively. Under these conditions, high‐quality conducting fibers containing polyPy and BF (PPy‐BF) were obtained with an electrical resistivity as low as 0.54 Ω.cm. The PPy‐BF was blended with different concentrations of polyurethane (PU) by mixing the two components in a vacuum chamber and then applying compression molding. The electrical resistivity of composites with 25 wt% of PPy‐BF was around 1.8 × 105 Ωcm, which is approximately 108 times lower than that found for pure PU. Moreover, PU/PPy‐BF composites exhibited higher mechanical properties than pure PU and PU/PPy, indicating that these conducting fibers can also be used as reinforcement for polymer matrices. The properties of the PPy‐BF obtained by the method described herein open interesting possibilities for novel applications of electrically conducting fibers, from smart sensors to new conducting fillers that can be incorporated into several polymer matrixes to develop conducting polymer composites with good mechanical properties.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
Electrochemical polymerization of pyrrole in a solution containing dissolved poly(vinyl alcohol) (PVA) produces a homogeneous, free‐standing, flexible, and conductive polymer film. The films were characterized using infrared spectroscopy, wide‐angle X‐ray diffraction analysis, and scanning electron microscopy. The appearance of standard and some new absorption bands for polypyrrole (PPy) and PVA confirms the composite formation. The mechanical properties of conducting PVA + PPy films were studied and found to be improved with respect to the control PPy films. The electrical conductivity of the PVA + PPy films was measured by using standard four‐ and two‐probe methods. The conductivity of the films was found to depend on the pyrrole content. These conducting composites were further used as gas sensors by observing the change in current with respect to ammonia gas. It was observed that the current decreases when these composites were exposed to ammonia gas. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2511–2517, 2001  相似文献   

8.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
Electrically conducting biodegradable polymer composites made of polypyrrole (PPy) nanoparticles embedded in poly(L ‐lactide) (PLLA) or poly(ε‐caprolactone) (PCL) are prepared by chemical oxidative polymerization. They will be used as electrical conductors for fabricating biodegradable passive resonant circuits for bioimplants. For both composites, the conductivity exhibits a percolation threshold at ~6 wt% of PPy. Several reactants are tested, the polymerization process resulting in the highest conductivity uses iron(III)chloride hexahydrate (FeCl3), sodium dodecyl benzene sulfonate, and p‐nitrophenol (pNPh), for both poly(L ‐lactide)‐polypyrrole (PLLA‐PPy) and poly(ε‐caprolactone)‐polypyrrole (PCL‐PPy). Conductivities of 2.7 ± 0.8 S cmε1 (PLLA‐PPy) and 7.8 ± 2.3 S cm?1 (PCL‐PPy) are reached for a PPy content of 40 wt%. The PPy particle, observed by SEM, forms agglomerates having a size of 0.6–3.5 μm. The samples have similar PPy particle distributions over the entire cross sections. The conductivity as a function of time is investigated, being 34–70% of the initial value for samples stored in nitrogen, whereas it is less than 1% for samples stored in body‐like conditions, bringing the conclusion that a biodegradable packaging will be required to protect the resonant circuits from body fluids. Finally, the biocompatibility of the polymer composites is evaluated with cytocompatibility tests on dermal human fibroblast cells, showing promising results in particular for composites having a low PPy content. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

10.
The electrochemical copolymerization of pyrrole (Py) and 1-dimethylaminopyrrole (DMAPy) was successfully carried out in the presence of three different types of surfactant (anionic, cationic and non-ionic) by cyclic voltammetric method. The influence of anionic (sodium dodecylbenzenesulfonate) (NaDBS), cationic (tetradecyltrimethylammonium bromide) and non-ionic poly(ethylene oxide)(10) iso-octylphenyl ether (Tween 20) surfactants on the properties of copolymer was investigated. The copolymer has been characterized by the cyclic voltammetry, fourier transform infrared spectroscopy, UV–Vis spectroscopy, scanning electron microscopy, thermogravimetric analysis and conductivity measurements. The results confirmed that the electrochemical reaction of Py and DMAPy in the presence of surfactants generated copolymers. The type of surfactant had an effect on the structural, morphological, thermal and conductivity properties of the copolymers in different ways. According to the initial decomposition temperatures, the thermal stability of the copolymers improved in the presence of surfactants. Py/DMAPy copolymer synthesized in the presence of anionic surfactant NaDBS had the highest initial decomposition temperature (320 °C). The copolymer prepared using various surfactants exhibited different morphologies. The electrical conductivity of pyrrole/1-dimethylaminopyrrole copolymer (8.39 × 10?3 Scm?1) was improved using surfactants, especially with anionic surfactant (3.75 × 10?2 Scm?1) due to the incorporation of NaDBS into the PPy polymer chain that resulted in a more compact morphology and reduced size of PPy globules.  相似文献   

11.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
Hua Bai  Canhui Lu  Gaoquan Shi 《Polymer》2009,50(14):3292-972
Various conducting polymer/hydrophobic insulating polymer (CP/HIP) composite nanofibers have been prepared by electrospinning and vapor deposition polymerization (VDP) with benzoyl peroxide (BPO) as oxidant. BPO is soluble in N,N-dimethylformamide (DMF) and can form homogenous solutions with hydrophobic polymers such as poly(methyl methacrylate) (PMMA) and polystyrene (PS). High-quality nanofibers of PMMA or PS containing a certain amount of BPO were produced by electrospinning and used as the templates for VDP of pyrrole, 3,4-ethylenedioxythiophene (EDOT), and aniline. The non-woven mats of the resulting CP/HIP composite fibers can be used as the high-sensitive sensing elements of gas sensors. A gas senor based on polypyrrole (PPy)/PMMA composite fibers was fabricated for sensing ammonia or chloroform vapor, and exhibited greatly improved performances comparing with those of the device based on a PPy flat film.  相似文献   

13.
Crosslinked polystyrene‐multiwalled carbon nanotube (PS‐MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS‐MWCNT balls ranged from 10 to 100 μm and their electrical conductivity was about 7.7 × 10?3 S/cm. The morphology of the crosslinked PS‐MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS‐MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS‐MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS‐MWCNT ball composites were better than those of the PS/pristine MWCNT composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Conductive homopolymers and composites of poly(2‐chloroaniline) (P2ClAn) and polyfuran (PFu) were synthesized chemically in hydrous and anhydrous media, and their properties were investigated. The polymers and composites were characterized by Fourier infrared spectroscopy, ultraviolet‐visible absorption spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, magnetic susceptibility, and conductivity measurements. It was found that the PFu/P2ClAn composite is thermally more stable than both the P2ClAn/PFu composite and the homopolymers. It was determined from Gouy scale measurements that conducting mechanisms of homopolymers and composites are polaron and bipolaron in nature. It was observed that the conductivity and magnetic susceptibility values changed with a changing amount of the guest polymer in the prepared composites. The conductivity (3.21 × 10?2 S/cm) of the P2ClAn/PFu (55.8% m/m) composite was found to be higher than the conductivities of both homopolymers (σPFu = 1.44 × 10?5 S/cm; σP2ClAn = 1.32 × 10?3 S/cm). It was determined that the composites synthesized had different conductivities and morphological and thermal properties from changing synthesis order. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2924–2931, 2003  相似文献   

15.
The extension of electrocatalytic reaction of I?/I3? from counter electrode/gel electrolyte interface to gel electrolyte can significantly enhance the redox kinetics and therefore conversion efficiency of dye‐sensitized solar cells. Microporous gel electrolyte from polypyrrole integrated poly(hydroxyethyl methacrylate/cetytrimethylammonium bromide) [PPy‐integrated poly (HEMA/CTAB)] is successfully synthesized by in‐situ polymerization of pyrrole monomers in three‐dimensional framework of porous poly(HEMA/CTAB) matrix. An ionic conductivity of 12.72 mS cm?1 and activation energy of 8.65 kJ mol?1 are obtained from PPy‐integrated poly(HEMA/CTAB) gel electrolyte. Tafel polarization and electrochemical impedance spectroscopy are employed to characterize the electrocatalytic behaviors of the gel electrolytes. The resultant quasi‐solid‐state dye‐sensitized solar cell shows a light‐to‐electrical conversion efficiency of 6.68%. POLYM. ENG. SCI., 54:2531–2535, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Electrically conducting polyacrylonitrile (PAN)/polypyrrole (PPy) composite films were prepared by electrochemical polymerization of pyrrole in an insulating PAN matrix under various polymerization conditions and their electrical properties were studied. The conductivities of PAN/PPy composite films peeled off from the platinum electrode he lie in the range of 10?2–10?3 s/cm, depending on the preparation conditions: The conductivity increased with the concentrations of the electrolyte and the monomer, but it decreased with the polymerization temperature of pyrrole and the applied potential.  相似文献   

17.
Single‐walled carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) composites were prepared using coagulation method. The electrical conductivity and the electromagnetic interference (EMI) shielding of SWNT/PMMA composites over the X‐band (8–12 GHz) and the microwave (200–2000 MHz) frequency range have been investigated. The electrical conductivity of composites increases with SWNT loading by 13 orders of magnitude, from 10?15 to 10?2 Ω?1 cm?1 with a percolation threshold of about 3 wt% SWNTs. The effect of the sample thickness on the shielding effectiveness has been studied, and correlated to the electrical conductivity of composites. The data suggest that SWNT/PMMA composites containing higher SWNT loading (above 10 wt%) be useful for EMI shielding and those with lower SWNT loading be useful for electrostatic charge dissipation. The dominant shielding mechanism of SWNT/PMMA composites was also discussed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Hua Bai 《Polymer》2007,48(18):5259-5267
The composites of polypyrrole (PPy) and poly(vinyl alcohol) (PVA) with aligned 3-dimensional (3D) microstructures have been fabricated via vapor deposition polymerization (VDP) of pyrrole onto the microstructured composites of PVA and FeCl3 (PVA-FeCl3) formed by directional freezing. In these composites, the microstructures of PVA act as the frameworks and the conducting polymer components provide the materials with conductive function. The composites are foam-like with low weight density. However, they have good mechanical properties, and can be easily mechanically processed into various desired shapes. The apparent conductivity of the composite containing 20 wt% PPy was measured to be approximately 0.1 S cm−1. The ammonia gas sensor based on this 3D composite exhibited high sensitivity. The strategy developed here can be extended to fabricate the 3D microstructured conductive composites by using other conducting polymers or water-soluble polymers.  相似文献   

19.
Corrosion protection performance of epoxy polyamide coatings containing polypyrrole (PPy) composites for steel has been studied. PPy and its composites have been synthesized chemically using potassium permanganate and potassium per sulfate as oxidants. The PPy has been characterized by four probe method for conductivity, atomic absorption spectroscopy for elemental analysis, and Fourier transform infrared spectra for proving the incorporation of dopant in this polymers. The X‐ray diffraction (XRD) study has revealed the presence of manganese dioxide in the polymer. The elemental analysis and the thermo gravimetric analysis measurements showed that the presence of manganese dioxide in the polymer is about 75%. The thermal stability of deprotonated polymer has improved. Electrochemical impedance spectroscopic analysis indicated that the epoxy polyamide/PPy‐MnO2 coating showed the maximum resistance value of 2.196 × 107 Ω cm2 after 30 days immersion in 3% sodium chloride solution. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In this work, high electrically conductive Polymethylmethacrylate/graphite (PMMA/G) composites with a specific core-shell structure were synthesized via Pickering emulsion (solid-stabilized emulsion) route. The electrical conductivity of the core-shell composites was measured by a four-point probe resistivity determiner and a very high value of 9.8?×?10?3 S/cm (1013 times higher than virgin PMMA) was obtained at 30 wt% graphite. However, the electrical conductivity of the PMMA/G composites gained through traditional blend process was relatively lower and the value only reached 9.4?×?10?9 S/cm at same graphite loading fraction. Contact angle measurement was applied to determine the surface free energy of the modified graphite which was cladded by Al(OH)3. The morphology of the core-shell composites was observed by SEM and optical microscopy. Dynamic rheology analysis was employed to study the structural change by the interconnection of the graphite flakes and the formation of the networks in the composites. The interconnected networks of the core-shell composites were more easily constructed when compared with the composites obtained by the traditional blending process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号