首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially doped conductive poly(3‐undecylbithiophene) and its composites with porous, crosslinked polystyrene were chemically doped with iodine using supercritical carbon dioxide to transport iodine to the conductive regions of the composite. The amount of iodine incorporated into the composite increased from 9.3 wt % at ambient conditions without carbon dioxide to 21.4 wt % in the presence of supercritical carbon dioxide. The conductivity of the composite increased by up to two orders of magnitude with iodine doping using supercritical carbon dioxide. The highest conductivity was obtained in samples treated at moderate temperatures and pressures (313 K and 20.7 MPa). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3876–3881, 2003  相似文献   

2.
Supercritical carbon dioxide (SC‐CO2) has been used to assist the preparation of conductive polypyrrole/cellulose diacetate (PPy/CDa) composites by in situ chemical oxidative polymerization. The morphology and conductivity of resulted composites were investigated with scanning electron microscopy and four‐probe method, respectively. With the assistance of strong swelling effect of SC‐CO2, composite films were obtained with a macroscopically homogeneous structure and conductivity up to 10?1 S cm?1 order of magnitude. Increasing the pressure of SC‐CO2 increased conductivity, while increasing the temperature decreased conductivity. For comparison, PPy/CDa composite was also prepared with conventional oxidative method in aqueous solution. From the viewpoint of conductivity and environmental protection, the SC‐CO2 method showed its superiority over the conventional one. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4575–4580, 2006  相似文献   

3.
Conducting polymers of alkylanilines, pyrrole, and their conducting composites were synthesized by oxidation polymerization. The oxidants used were KIO3 and FeCl3 for the polyalkylanilines and polypyrrole (PPy), respectively. Among the polyalkylanilines synthesized with KIO3 salt, the highest conductivity was obtained with poly(2‐ethylaniline) (P2EAn) with a value of 4.10 × 10?5 S/cm. The highest yield was obtained with poly(N‐methylaniline) with a value of 87%. We prepared the conducting composites (PPy/P2EAn and P2EAn/PPy) by changing synthesis order of P2EAn and PPy. The electrically conducting polymers were characterized by IR spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, and X‐ray diffraction spectroscopy. From the results, we determined that the properties of the composites were dependent on the synthesis order of the polymers. The thermal degradation temperature of PPy was observed to be higher than that of the other polymers and composites. We determined from X‐ray results that the structures of the homopolymers and composites had amorphous regions (88–95%) and crystal regions (5–12%). From the Gouy balance magnetic measurements, we found that the polymers and composites were bipolaron conducting mechanisms. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 241–249, 2006  相似文献   

4.
Ag/polypyrrole (PPy) composites were synthesized with different dispersants via interface polymerization method. The morphology of the composites was investigated by scanning electron microscopy and transmission electron microscopy, and the results showed that the dispersant had strong effect on the morphology of the obtained composites. The structure of the products was characterized by Fourier transform infrared spectroscopy, and X‐ray diffraction. The specific capacitance and impedence of Ag/PPy composites electrode was evaluated through charge/discharge measurements and electrochemical impedance spectroscopy, respectively. Electrochemical performances indicated that Ag/PPy composite electrode used polyvinyl alcohol as dispersant exhibited the highest specific capacitance of 635.5 F/g at a current density of 2.45 mA/g, which provided potential application as supercapacitor materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Polysiloxane/polyaniline microcomposites were prepared, in which polyaniline particles act as filler, thus combining the mechanical properties of polysiloxane matrix with conductivity of polyaniline. Two syntheses were evaluated: (1) homogeneous dispersion of a polyaniline colloid in the reaction mixture from which the polysiloxane matrix subsequently formed, and (2) the blending of previously prepared dry polyaniline particles with a liquid oligomeric siloxane resin followed by cure (“heterogeneous method”). Both methods lead to composites with evenly distributed filler. Electrical conductivity was achieved above 40 wt % of polyaniline, which is better obtained by the “heterogeneous” method. During the composite cure, the polyaniline particles, which are softer than the matrix, act as a catalyst and cause more efficient matrix crosslinking, thus leading to somewhat raised moduli. Although particulate fillers usually deteriorate the impact toughness, in the case of the prepared composites, the impact toughness was preserved due to the softer consistence of the filler, which hinders crack propagation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42429.  相似文献   

6.
Experimental results on electrical conductivity of both doped polypyrrole (PPy) powder and conducting poly(vinyl alcohol) (PVA)–PPy composite are presented. In each case, FeCl3 has been used as the oxidizing–polymerizing agent. Results are interpreted on the basis of a model in which counter-ions act through their attractive potential by forming conducting ways between chains and allowing transverse conduction. In the case of PPy powder, the major contribution to conduction mechanisms is hopping between polaronic clusters. In the case of the composite, an additional contribution results from fluctuation-induced tunneling through thin insulating PVA barriers. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:709–713, 1998  相似文献   

7.
Double‐shelled coaxial nanocables of silver nanocables with SiO2 and polypyrrole (PPy; Ag/SiO2/PPy) were synthesized by a simple method. The thickness of the outer PPy shell could be controlled by the amount of pyrrole monomer. The silver nanocables encapsulated in the interior of the hollow PPy nanotubes were obtained by the removal of the midlayer SiO2. By the silver‐mirror reaction, flowerlike Ag nanostructures could be formed on the surface of the Ag/SiO2/PPy multilayer nanocable. The application of the as‐prepared Ag/SiO2/PPy–Ag composites in surface‐enhanced Raman scattering (SERS) was studied with Rhodamine B (Rh B) as a probe molecule. We found that the composites could be used as SERS substrates and that they exhibited excellent enhancement ability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
MXenes with a large surface area have been widely studied to improve the pseudocapacitance of electrode materials by combining conductive polymer materials. In this article, a superficial strategy to enhance the electrochemical properties by in situ polymerization of a pyrrole monomer between the Ti3C2Tx layers modified with 1,5-naphthalene disulfonic acid (NA) and cetyltrimethylammonium bromide (CTAB) was investigated. It is found that polypyrrole (PPy) and Ti3C2Tx can be combined through strong interactions between each other, and the specific capacitance of the modified Ti3C2Tx/PPy composite was increased to a maximum value of 437 F g−1, which was more than thrice higher than that of pure PPy. The composite also exhibited good cycling performance (76% capacitance retention after 1000 cycles). Moreover, owing to the synergistic effect between the PPy and Ti3C2Tx layers, the composite provided better electron or ion transfer and surface redox processes than that of pure PPy, which indicated that this composite can be used as a promising electrode material for supercapacitors. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47003.  相似文献   

9.
Conductive and flexible polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical syntheses were performed at +1.10 V by using p‐toluene sulfonic acid (PTSA) as supporting electrolyte and water as solvent. Composites were characterized by cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy. Conductivity measurements and mechanical tests were also performed. The observed conductivities were in the range of 3.5–7.6 S/cm, indicating that the conductivities of PDMS/PPy composites and that of pure PPy were in the same order of magnitude. Tensile tests revealed that higher percent elongation was obtained by the addition of PDMS. Highly flexible and foldable PDMS/PPy composites were successfully synthesized, which have high conductivities and improved mechanical properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 736–741, 2004  相似文献   

10.
Conducting composite films of polyalkylanilines with nylon 6 as the insulating matrix were electrochemically synthesized and characterized. The electrochemical properties of the alkylanilines and their composites were investigated with a cyclic voltammetry technique. The magnetic properties of the polymers and composites were analyzed, and their conducting mechanisms were found to be of bipolaron nature. With Fourier transform infrared spectra, it was clarified that polymerization occurred via the ? NH2 group in a head‐to‐tail mechanism. Through thermogravimetric analyses, the thermal properties of the polymers and their composites were elucidated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1693–1701, 2003  相似文献   

11.
The dc electrical conductivity (σ) of HCl‐protonated polyaniline, polypyrrole, and their blends was measured from 80 to 300 K for thermal aging times between approximately 0 and 600 h. The thermal aging took place at 70°C under room atmosphere. The change of σ with the temperature (T) and the decrease of σ with the thermal aging time (t) are consistent with a granular metal type structure, in which conductive grains are randomly distributed into an insulating matrix. Aging makes the grains shrink in a corrosion‐like process. From σ = σ(T) measurements the ratio s/d, where s is the average separation between the grains and d their diameter, as well as the rate d(s/d)/dt of their decrease with t were calculated. These revealed that the conductive grains consist of a shell, in which aging proceeds at a decreasing rate, and a central core, which is consumed at a much slower rate. Our measurements not only permitted the estimation of the shell thickness, which lies between 0 and 5 Å, but also gave quantitative information about the quality of the shells and the cores from their aging rates. The shells are consumed with an average rate of d(s/d)/dt = 6.6 × 10?4 (h?1), which is about 5 times greater than the more durable cores. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 117–122, 2005  相似文献   

12.
Secondary doping method was introduced into fabricating polypyrrole/oganic modified attapulgite conductive composites. The preparation conditions, such as amount of hexadecylpyridinium chloride (CPC, modifying agent), organic modified attapulgite (OATP), and HCl (secondary dopant) have been optimized to get the composites with the highest conductivity. When mCPC/mATP, mOATP/mPy, and nHCl/nSA (SA is sulfamic acid) reaches 0.03, 0.6, and 0.5, respectively, the PPy/OATP composites possess the highest conductivity of 87.59 S cm?1 as well as the highest thermal degradation temperature of 249.29°C. Scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, UV‐Visible diffuse reflectance study, and X‐ray photoelectron Spectroscopy results showed that PPy chains form the core‐shell structure and may combine with OATP via π–π stacking interaction. Thermogravimetric analysis showed that the thermal stability of PPy/OATP‐SH composites was enhanced and these could be attributed to the retardation effect of OATP as barriers for the degradation of PPy. This method may open a new door for PPy‐based composites with special structures, higher performance, and thus broader application ranges. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41407.  相似文献   

13.
Polypyrrole (PPy) nanostructures with diameter smaller than 100 nm were synthesized by chemical oxidative polymerization of pyrrole in the presence of cetyl trimethylammonium bromide and sodium dodecyl sulfate as surfactants. Hydrochloric acid was used as dopant, and a solution of potassium peroxydisulfate was used as initiator. The influence of polymerization temperature, feeding strategy, and the type of surfactant on the morphology and conductivity of PPy nanostructures were investigated and well‐described. A simple route just via controlling the operational conditions in the emulsion polymerization is reported to obtain nanostructured PPy with desirable morphology and relatively good conductivity. The analysis results demonstrated that the conductivity of samples is highly affected by their morphology whereas PPy nanofibers exhibited higher conductivity respecting the other morphologies (0.66 S/cm). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44697.  相似文献   

14.
A new type of carbon nanotube (CNT) (diameter of <100 nm) coated by conducting polypyrrole (PPY) was synthesized by in situ polymerization on CNTs. The structure of the resulting complex nanotubes (CNT‐PPY) was characterized by elemental analysis, X‐ray photoelectron spectroscopy, Raman spectra, and X‐ray diffraction. These indicated no significant chemical interaction between PPY and the CNT. The electrical, magnetic, and thermal properties of the complex nanotubes were measured and showed the physical properties of the CNTs were modified by conducting PPY. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2605–2610, 1999  相似文献   

15.
The reduced graphene oxide/nonwoven fabric (rGO/NWF) composites have been fabricated through heating the NWF coated with the mixture of GO and HONH2·HCl at 130°C, during which the GO is chemically reduced to rGO. Then the composites of polypyrrole (PPy)/rGO/NWF have been prepared through chemically polymerizing pyrrole vapor by using the FeCl3·6H2O adsorbed on rGO/NWF substrate as oxidant. Finally, multiwalled carbon nanotubes (MWCNTs) are used as conductive enhancer to modify PPy/rGO/NWF through dip‐dry process to obtain MWCNTs/PPy/rGO/NWF. The prepared composites have been characterized and their capacitive properties have been evaluated in 1.0M KCl electrolyte by using two‐electrode symmetric capacitor test. The results reveal that MWCNTs/PPy/rGO/NWF possesses a maximum specific capacitance (Csc) of about 319 F g?1 while PPy/rGO/NWF has a Csc of about 277.8 F g?1 at the scan rate of 1 mV s?1 and that optimum MWCNTs/PPy/rGO/NWF retains 94.5% of initial Csc after 1000 cycles at scan rate of 80 mV s?1 which is higher than PPy/rGO/NWF (83.4%). Further analysis reveals that the addition of MWCNTs can increase the charger accumulation at the outer and inner of the composites, which is favorable to improve the stability and the rapid charge‐discharge capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41023.  相似文献   

16.
The penetration of titanium tetraisopropoxide (TTIP) dissolved in supercritical CO2 into the nano-spaces of an activated carbon was studied for the preparation of a TiO2-coated activated carbon. The conversion of TTIP to TiO2 through thermal decomposition was confirmed by evolved gas analysis during heat treatment under a N2 flow. Acetone was detected in the evolved gas, which suggested that some isopropoxide groups in TTIP reacted with the carbonyl groups on the activated carbon surface. This chemical reaction with carbon is expected to be advantageous for favorable attachment to the carbon surface. The crystallite size of anatase in the TiO2/carbon composites was 4.1 nm, as estimated from the X-ray diffraction pattern, which almost corresponded to the graphene crystallite size; La (3.3-3.4 nm), as estimated from both the Raman spectrum and X-ray diffraction pattern. As the size of the crystallite prepared by bulk condensation of TTIP was more than 15 nm, these results confirmed that the anatase crystals were present in the carbon pores. Also, it was suggested that the crystal growth of TiO2 was influenced by the carbon nano-spaces.  相似文献   

17.
Biodegradable polymer foams are attracting extensive attention in both academic and industrial fields. In this study, an emerging biodegradable polymer, poly(propylene carbonate) (PPC), was compounded with nano calcium carbonate (nano‐CaCO3) and foamed via supercritical carbon dioxide for the first time. Four concentrations of nano‐CaCO3, 1, 3, 5, and 10 wt %, were used and the thermal properties of PPC/nano‐CaCO3 composites were investigated. The glass‐transition temperature and thermal decomposition temperature of the PPC/nano‐CaCO3 composites increased with the addition of nano‐CaCO3. The morphologies of the PPC/nano‐CaCO3 composites and the rheological results showed that homogeneous dispersions of nano‐CaCO3 and percolated nano‐CaCO3 networks were achieved at a nano‐CaCO3 content of 3 wt %. Therefore, the finest cell diameter (3.13 μm) and highest cell density (6.02 × 109 cells/cm3) were obtained at the same nano‐CaCO3 content. The cell structure dependences of PPC and PPC with a nano‐CaCO3 content of 3 wt % (PPC‐3) foams on the foaming pressure and temperature were investigated as well. The results suggested that the cell structure of PPC‐3 was more stable at different foaming conditions due to the networks of nano‐CaCO3. Moreover, the change in pressure was more influential on the cell structure than the temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42248.  相似文献   

18.
In this study, we sprayed a graphene oxide–multiwalled carbon nanotube (GM) suspension in isopropyl alcohol–water onto a Nafion membrane. The electrodeposition of polypyrrole (PPy) was carried out on Nafion to complete the fabrication of a solid‐state symmetric supercapacitor. Nafion 117 membranes are used as electrolyte separators in the preparation of supercapacitors. The characterization of the symmetric supercapacitor was done by X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the symmetric solid‐state supercapacitor were investigated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques in 1M lithium chloride. A specific capacitance of 90.4 mF/cm2 (258.3 F/g1) was obtained for the supercapacitor at a scan rate of 10 mV s?1. Maximum energy and power densities of 10 W h/kg and 6031 W/kg were obtained for the fabricated supercapacitor. In such a symmetric configuration, the highly interconnection networks of GM–PPy provided good structure for the supercapacitor electrode, and the good interaction between PPy and GM provided fast electron‐ and charge‐transportation paths so that a high capacitance was achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44926.  相似文献   

19.
Composites of polyaniline (PANI) nanorods and multiwalled carbon nanotubes (MWNTs) coated with PANI were prepared by in situ polymerization with perchloric acid as a dopant. Transmission electron microscopy images showed that the coexisting composites of PANI nanorods and MWNTs coated with PANI were formed at low MWNT contents. The interaction between MWNTs and PANI was proved by Fourier transform infrared and ultraviolet–visible spectra. The electrical conductivity of a dedoped PANI/MWNT composite with a 16.3 wt % concentration of MWNTs reached 3.0 × 10?3 S/cm, which was 6 orders of magnitude higher than that of dedoped PANInanorods. The results also showed that coexisting composites of PANI nanorods and MWNTs coated with PANI had high electrochemical activity and good cyclic stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
Silicone composite filled with zinc oxide microvaristors possesses excellent nonlinear conducting behavior as ZnO varistor does. For better adjusting the composite's electrical behavior to satisfy the practical field‐grading requirement, this article studied the influence of ZnO filler's property on the nonlinearity of the composite. Several groups of ZnO‐silicone composite samples in different filler volume fraction and filler diameter were prepared, the measured J‐E characteristics show that the percolation threshold of ZnO‐silicone composite is around 35%, above which the composites present reliable nonlinear behavior. The switching voltage of the composite exhibits a considerable decrease as filler's diameter increases or filler's volume fraction increases, while the nonlinear coefficient remains stable. Moreover, filler's size also has a little influence on composite's percolation limit. The conclusion above fits very well with the theory of the conducting composites and percolation process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42645.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号