首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of reactive poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) and poly(vinyl acetate)‐block‐polystyrene (PVAc‐b‐PS) as low‐profile additives (LPA) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester resins (UP) during the cure at 30°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerizations, using polymeric peroxides (PPO) as initiators. Depending on the LPA composition and molecular weight, the reactive LPA could lead to a reduction of cyclization reaction for UP resin during the cure, and would be favorable for the decrease of intrinsic polymerization shrinkage after the cure. The experimental results have been explained by an integrated approach of measurements for the static phase characteristics of the styrene (ST)/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and image analysis. Based on the Takayanagi mechanical model, factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts have been explored. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 967–979, 2006  相似文献   

2.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐PMMA as low‐profile additives (LPAs) on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing at 110°C were investigated. These reactive LPAs, which contained peroxide linkages in their backbones, were synthesized by suspension polymerization with polymeric peroxides as initiators. Depending on the LPA composition and molecular weight, the reactive LPAs led to a considerable volume reduction or even to a volume expansion after the curing of styrene (ST)/UP/LPA ternary systems; this was attributed mainly to the expansion effects of the LPAs on the ST‐crosslinked polyester microgel structures caused by the reduction in the cyclization reaction of the UP resin during curing as well as to the repulsive forces between the chain segments of UP and LPAs within the microgel structures. The experimental results were explained by an integrated approach of measurements for the static phase characteristics of the ST/UP/LPA system, reaction kinetics, cured sample morphology, and microvoid formation with differential scanning calorimetry, scanning electron microscopy, optical microscopy, and image analysis. With the aid of the Takayanagi mechanical model, the factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts were also explored. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 264–275, 2005  相似文献   

3.
The effects of chemical structure and molecular weight of three series of thermoplastic polyurethane‐based (PU) low‐profile additives (LPA) on the miscibility of styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems prior to reaction were investigated by using the Flory‐Huggins theory and group contribution methods. The reaction kinetics during the cure at 110°C and the cured sample morphology were also studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. The phase‐separation characteristics of ST/UP/LPA systems during the cure, as revealed by the cured‐sample morphology, and the DSC reaction‐rate profile, could be generally predicted by the calculated upper critical solution temperature for the uncured ST/UP/LPA systems. Finally, based on the measurements for volume change and microvoid formation, volume shrinkage characteristics for the cured ST/UP/LPA systems have been explored. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 543–557, 2000  相似文献   

4.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride) with different chemical structures and MWs on the volume shrinkage characteristics and internal pigmentability for low‐shrink unsaturated polyester (UP) resins during curing were investigated by an integrated approach of static phase characteristics of the ternary styrene (ST)/UP/LPA system, reaction kinetics, cured‐sample morphology, microvoid formation, and property measurements. The relative volume fraction of microvoids generated during the cure was controlled by the stiffness of the UP resin used, the compatibility of the uncured ST/UP/LPA systems, and the glass‐transition temperature of the LPAs used. On the basis of the Takayanagi mechanical model, the LPA mechanism on volume shrinkage control, which accounted for phase separation and microvoid formation, and factors leading to both a good volume shrinkage control and acceptable internal pigmentability for the molded parts are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3388–3397, 2004  相似文献   

5.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

6.
Unsaturated polyester resins (UPRs) are versatile compounds. However, their major drawback is the high shrinkage exhibited on curing. An attempt was made to reduce the shrinkage of UPRs without affecting other properties. In the present study a commonly used iso‐reactive UPR was modified by the addition of ethylene–vinyl acetate (EVA; subjected to controlled depolymerisation to obtain samples of various molecular weights), and was cured at room temperature. The peak exotherm temperature and gel time were both observed to decrease with an increase in EVA content. The composition incorporating 0.5% of depolymerised EVA1 (highest degree of branching) showed maximum improvement in tensile and flexural properties with the heat deflection temperature and impact properties remaining almost unaffected. A uniform dispersion for the UPR containing 0.5% of EVA1 was observed. Addition of EVA reduced the percentage shrinkage in the modified matrix. Incorporation of depolymerised EVA can be an attractive option for the reduction of shrinkage in UPRs. The advantage of using depolymerised EVA is that generated waste EVA can be depolymerised and reused for this application making it cost effective. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The effects of reactive poly(methyl methacrylate) (PMMA) and poly(vinyl acetate)‐block‐poly(methyl methacrylate) (PVAc‐b‐PMMA) as low‐profile additives (LPAs) on the glass‐transition temperature and mechanical properties of low‐shrink unsaturated polyester resin (UP) were investigated by an integrated approach of determining static phase characteristics, reaction kinetics, cured sample morphology, and property measurements. The factors that, according to Takayanagi mechanical models, control the glass‐transition temperature in each phase region of the cured samples, as identified by both the thermally stimulated currents method and dynamic mechanical analysis, and the mechanical properties are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 867–878, 2006  相似文献   

8.
The effects of three series of thermoplastic polyurethane‐based (PU) low‐profile additives (LPA) with different chemical structures and molecular weights on the glass transition temperatures and mechanical properties for thermoset polymer blends made from styrene (ST), unsaturated polyester (UP), and LPA have been investigated by an integrated approach of static phase characteristics‐cured sample morphology‐reaction conversion‐property measurements. The three series of PU used were made from 2,4‐tolylene di‐isocyanate (2,4‐TDI) and varied diols, namely polycaprolactone diol (PCL), poly(diethylene adipate) diol (PDEA), and poly(propylene glycol) diol (PPG), respectively, while the two UP resins employed were synthesized from maleic anhydride (MA) and 1,2‐propylene glycol (PG) with and without modification by phthalic anhydride (PA). Based on the Takayanagi mechanical models, factors that control the glass transition temperature in each phase region of cured samples, as identified by the method of thermally stimulated currents (TSC), and mechanical properties will be discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 558–568, 2000  相似文献   

9.
The effects of three series of self‐synthesized poly(methyl methacrylate) (PMMA)‐based low‐profile additives (LPAs), including PMMA, poly(methyl methacrylate‐co‐butyl acrylate), and poly(methyl methacrylate‐co‐butyl acrylate‐co‐maleic anhydride), with different chemical structures and MWs on the miscibility, cured‐sample morphology, curing kinetics, and glass‐transition temperatures for styrene (ST)/unsaturated polyester (UP) resin/LPA ternary systems were investigated by group contribution methods, scanning electron microscopy, differential scanning calorimetry (DSC), and dynamic mechanical analysis, respectively. Before curing at room temperature, the degree of phase separation for the ST/UP/LPA systems was generally explainable by the calculated polarity difference per unit volume between the UP resin and LPA. During curing at 110°C, the compatibility of the ST/UP/LPA systems, as revealed by cured‐sample morphology, was judged from the relative magnitude of the DSC peak reaction rate and the broadness of the peak. On the basis of Takayanagi's mechanical models, the effects of LPA on the final cure conversion and the glass‐transition temperature in the major continuous phase of ST‐crosslinked polyester for the ST/UP/LPA systems was also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3369–3387, 2004  相似文献   

10.
Liqun Xu 《Polymer》2004,45(21):7325-7334
The addition of a small amount of nanoclay (1-3 wt%) can provide excellent volume shrinkage control of unsaturated polyester (UP)/styrene (St)/poly(vinyl acetate) (PVAc) systems cured at room temperature. PVAc serves as the low profile additive (LPA). In this study, both temperature-induced phase separation of the uncured resin mixture and transmission electron microscopy (TEM) of the cured sample revealed that nanoclay resided in the LPA-rich phase, leading to a higher reaction rate and earlier onset of micro-cracking in the LPA-rich phase or at the interface of the LPA-rich and UP-rich phases. Consequently, an earlier volume expansion during curing was observed in reactive dilatometry, resulting in better shrinkage control. On-line measurement of the composite thickness change during vacuum-infusion liquid composite molding [e.g. the Seemann Composite Resin Infusion Molding Process (SCRIMP)] further proved excellent volume shrinkage control of nanoclay filled systems, leading to a smoother composite surface.  相似文献   

11.
In blends of unsaturated polyester (UP), poly (vinyl acetate) (PVAc), and styrene, a reaction‐induced phase separation occurs upon curing that is due to the crosslinking between styrene and the UP molecules. The evolution of the morphology was observed by optical microscopy on a heated stage. Light transmission was used in parallel to precisely detect the onset of phase separation and the formation of microvoids. Using Fourier transform IR spectroscopy in the same conditions, the conversions at phase separation and at microvoiding were evaluated. Phase separation occurs at a very low degree of conversion and microvoiding develops at around 60% of conversion. The final morphology of the blend was investigated by scanning electron microscopy. The relative influences of the cure temperature, the concentration in PVAc, and the molecular weight of PVAc were investigated. It was confirmed that the early stages of the reaction at high temperature determine the final morphology of the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3877–3888, 2006  相似文献   

12.
Xia CaoL.James Lee 《Polymer》2003,44(6):1893-1902
In low temperature molding processes, control of resin shrinkage and residual monomer is an important concern. The presence of low profile additives (LPAs) can reduce the shrinkage of unsaturated polyester (UP)/styrene (St) resins under proper processing conditions but may increase the residual styrene content. A systematic study was carried out to investigate the effect of the initiator system and reaction temperature on sample morphology, final resin conversion, and resin shrinkage of UP resins with LPA. It was found that the final conversion of the resin system could be improved by using dual initiators. The effect is more obvious at low temperatures. Volume shrinkage measurements of the resin system initiated with dual initiators revealed that good LPA performance was achieved at low (e.g. 35 °C) and high (e.g. 100 °C) temperatures but not at intermediate ones. This can be explained by how temperature affects phase separation, reaction kinetics in the LPA-rich and UP-rich phases, micro-void formation, and thermal expansion.  相似文献   

13.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

14.
The partially cured unsaturated polyester (UPE)/styrene resins with various degrees of conversion lower than gel conversion blended with PVAc and 2‐fluorotoluene solvent were investigated using both static and dynamic light scattering (SLS and DLS). The solvent (i.e., 2‐fluorotoluene) is isorefractive with PVAc; thus, one sees only primary and partially cured UPEs in light‐scattering experiments. DLS was used to follow the variations of primary UPE and UPE microgel particle sizes, and SLS was used to follow the variations of UPE molecular weight, second virial coefficient (A2), anisosymmetry (ρv), and differential index refraction (dn/dC) with degree of UPE conversion and PVAc concentration. The experimental data showed that, at a fixed degree of UPE/styrene conversion, increasing PVAc concentration in the UPE/styrene system caused decreases in dn/dC, A2, ρv, and particle sizes of UPE microgels. These results suggest that mixing PVAc into UPE/styrene resins causes an increase in the compactness of UPE coils and favors intramolecular UPE/styrene cyclization in the early stage of curing. Thus A2, ρv, and particle sizes of microgels decreased with increasing PVAc concentration. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1439–1449, 2001  相似文献   

15.
Shrinkage is critical to the unsaturated polyester resin (UPR) composite materials. Shrinkage influences the surface appearance, thus leading to warpage, internal cracks, and depression on the surface of the composite materials' products. Some studies and technologies have been conducted to controll the shrinkage. In this study, we presented 2,2‐dimethyl malonate as an anti‐shrinkage agent, which was different from the previous thermoplastic macromolecular agents. The shrinkage level of the CaCO3/UPR matrix dropped to zero with 12% 2,2‐dimethyl malonate by mass of UPR. The bending strength of CaCO3/UPR matrix with 2,2‐dimethyl malonate was also higher than that with the same adding amount of commercial thermoplastic agents at the low‐shrinkage level (below 0.25%) and the micro‐shrinkage level (below 0.08%). A reaction including two stages was proposed on the supporting of DSC and FTIR investigations. From the analysis results, we deduced that the first stage of the reaction was the esterification between 2,2‐dimethyl malonate and UPR, which did not occur in the UPR containing general thermoplastic anti‐shrinkage agent, and the second stage was restraining the cross polymerization of UPR, same to the reaction processes of general macromolecular anti‐shrinkage agents. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The foaming of PVC‐VA [Poly (vinyl chloride‐co‐vinyl acetate)] plastisols is a complex combination of processes involving the simultaneous curing of the paste with the evolution of gases caused by the decomposition of the chemical blowing agent. The extensional viscosity is a fundamental characteristic of the material, responsible for the behavior of the system when undergoing the extensional stress produced by the released gases. Nevertheless, such changes have not been considered to the same extent as the complex viscosity evolution or the thermal processes suffered by PVC‐VA plastisols. The objective of the present work is to study the extensional viscosity of the PVC‐VA plastisols prepared with three plasticizers of similar structure, but with different curing and rheological behavior in order to investigate its influence on the quality of the foams obtained. Extensional viscosity measurements under forced prestretch conditions revealed that depending on the structure and consequently on the compatibility of the plasticizer used, each plastisol develops its properties and structure accordingly. DINCH plasticizer (Diisononyl cyclohexane‐1,2‐dicarboxylate presenting alicyclic ring) seems to be the less compatible compared with the other two studied (both presenting aromatic rings) according to its behavior during the curing and foaming processes and may not be able to withstand the pressure evolved by the released gases during the foaming process yielding foams of poorer quality. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The curing reaction of a polyester resin, using methyl ethyl ketone peroxide and cobalt octoate as promoter, has been studied by differential scanning calorimetry and thermal scanning rheometry under isothermal conditions. All kinetic parameters of the curing reaction, including the reaction order, activation energy, and the rate constant, were calculated and reported using different empirical relationships. The gel time, which is defined by several criteria, was used to determine the apparent activation energy of the process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 447–457, 2001  相似文献   

18.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) on the curing kinetics during the cure of unsaturated polyester (UP) resins at 110°C were investigated by using a differential scanning calorimeter (DSC) and a Fourier transform infrared spectrometer (FTIR). The effects of temperature, molar ratio of styrene to polyester CC bonds, and LPA content on phase characteristics of the static ternary systems of styrene–UP–PVAc and styrene–UP–PMMA prior to reaction were presented. Depending on the molar ratio of styrene to polyester CC bonds, a small shoulder or a kinetic-controlled plateau in the initial portion of the DSC rate profile was observed for the LPA-containing sample. This was due to the facilitation of intramicrogel crosslinking reactions since LPA could enhance phase separation and thus favor the formation of clearly identified microgel particles. FTIR results showed that adding LPA could enhance the relative conversion of polyester CC bonds to styrene throughout the reaction. Finally, by use of a microgel-based kinetic model and static phase characteristics of styrene–UP–LPA systems at 25°C, the effects of LPA on reaction kinetics regarding intramicrogel and intermicrogel crosslinking reactions, relative conversion of styrene to polyester CC bonds, and the final conversio have been explained. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The effects of two low-profile additives (LPA), poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA), on the morphological changes during the cure of unsaturated polyester (UP) resins at 110°C were investigated by an approach of integrated reaction kinetics-morphology-phase separation measurements by using a differential scanning calorimeter (DSC), scanning electron microscopy (SEM), optical microscopy (OM), and a low-angle laser light-scattering appartus (LALLS). For the UP resins cured at 110°C, adding LPA could facilitate the phase separation between LPA and crosslinked UP phases early in the reaction, and discrete microgel particles were thus allowed to be identified throughout the reaction. Microvoids and microcracks responsible for the volume shrinkage control could also be observed evidently at the later stage of reaction under SEM. Depending on the types of LPA and the initial molar ratios of styrene to polyester C?C bonds, the morphological changes during the cure varied considerably. The progress of microstructure formation during reaction has been presented. Static ternary phase characteristics for the styrene–UP–LPA system at 25°C have also been employed to elucidate the resulting morphology during the cure in both the continuous and the dispersed phases. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
A study has been made of the isothermal crystallization kinetics of poly(ε‐caprolactone) (PCL) in partially miscible crosslinked polyester resin (PER)/PCL blends by using differential scanning calorimetry (DSC). For comparison, miscible blends of PCL with uncured polyester resin, i.e., oligoester resin (OER), were also investigated. The overall crystallization rate of PCL remarkably decreased with the addition of amorphous component, OER or PER. The kinetic rate constant Kn decreased sharply for both the OER/PCL blends and the crosslinked PER/PCL blends with decreasing PCL concentration. The mechanism of nucleation and geometry of the growing PCL crystals was not remarkably affected by the incorporation of OER, but changed considerably with the addition of PER. However, the overall crystallization rate of PCL in the crosslinked PER/PCL blends was much higher compared with the corresponding uncured OER/PCL blends, which is attributable to the phase‐separated structure and the reduced miscibility in the crosslinked blends. According to the nucleation and growth theories, the nucleation process was considered to be the rate controlling step in the crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 322–327, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号