首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(amide imide) copolymers were synthesized with different molar ratios of 4,4‐diphenylmethane diisocyanate, two types of aromatic dianhydrides (pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐sulfonyl diphthalic anhydride (DSDA)), and a diacid, which was derived from 3,3′‐dinitrobenzidine and isophthaloyl chloride in a previous work. In this study, the copolymers were further reacted with a reducing agent, and the nitro groups in the copolymers were hydrogenated into amine groups. Then, the amine‐group‐containing poly(amide imide) copolymers were cyclized at 180°C to form the poly(benzimidazole imide amide) copolymers in poly(phosphoric acid), which acted as a cyclizing agent. The resultant copolymers were soluble in sulfuric acid and poly(phosphoric acid) at room temperature and in sulfolane or N‐methyl‐2‐pyrrolidone under heating to 100°C with 5% lithium chloride. According to wide‐angle X‐ray diffraction, all the copolymers were amorphous. According to thermal analysis, the glass‐transition temperature ranged from 270 to 322°C, and the 10% weight‐loss temperature ranged from 460 to 541°C in nitrogen and from 441 to 529°C in air. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 378–386, 2004  相似文献   

2.
In this study, 3,3′‐dinitrobenzidine was first reacted with excess isophthaloyl chloride to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydride, [viz., pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐sulfonyldiphthalic anhydride (DSDA)] also were reacted with excess 4,4′‐diphenyl‐ methane diisocyanate (MDI) to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were reacted further with the diacid monomer to form a nitro group–containing aromatic poly(amide imide) copolymers. The nitro groups in these copolymers were hydrogenated to form amine groups and cyclized at 180°C to form the poly(benzimidazole amide imide) copolymers in polyphosphoric acid (PPA), which acts as a cyclization agent. From the viscosity measurements, copolymer appeared to be a reasonably high molecular weight. From the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements it was shown that the glass transition temperature of copolymers was in the range of ~270–322°C. The 10% weight loss temperatures were in the range of 460 ~ 541°C in nitrogen and ~441–529°C in air, respectively. The activated energy and the integration parameter of degradation temperature of the copolymers were evaluated with the Doyle‐Ozawa method. It indicated that these copolymers have good thermal and thermo‐oxidative stability with the increase in imide content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2072–2081, 2004  相似文献   

3.
2,6‐Bis(4‐aminophenoxy)pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate. Reaction of the diamine with two mol of trimellitic anhydride afforded a diacid with preformed imide structures. Poly(ether imide amide)s were prepared by polycondensation reactions of the diacid with different diamines in the presence of triphenyl phosphite. All the monomers and polymers were fully characterized and the physical properties of the polymers including solution viscosity, thermal stability, thermal behavior and solubility were studied. Thermal analysis data showed the polymers to have high thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
In this study, the 3′-dinitrobenzidine was first reacted with excess isophthaloyl chloride form a monomer with dicarboxylic acid end group. Two types of aromatic dianhydride (viz. pyromellitic dianhydride (PMDA) and 3,3′,4,4′-sulfonyldiphthalic anhydride (DSDA)), were also reacted with excess 4,4′-diphenyl-methane diisocyanate to form polyimide prepolymers terminated with an isocyanate group. The prepolymers was further extended with the diacid monomer to form a nitro group containing aromatic poly(amide-imide) copolymers. The nitro groups in these copolymers were hydrogenated to form amine groups and cyclized at 180 C, to form the poly(benzimidazole amide imide) copolymers in polyphosphoric acid which acted as a cyclization agent. The resulting copolymers can be soluble in sulfuric acid and polyphosphoric acid, in sulfolane under heating to 100 C, and in polar solvent N-methyl-2-pyrrolidone under heating to 100 C with 5% lithium chloride. From the DSC and TGA measurements, it demonstrated that the glass transition temperature of copolymers exhibits a range of 270∼322 C. The 10% weight loss temperatures exhibits a range of 460∼541 C in nitrogen, and 441∼529 C in air, respectively. The activation energy and the integration parameter of degradation temperature of the copolymers were evaluated by the Doyle–Ozawa method. It indicated that these copolymers exhibited good thermal and thermo-oxidative stability with the increase of imide content.  相似文献   

5.
A new series of poly(amide‐imide)s (PAI) modified with a siloxane linkage was synthesized under microwave radiation in ionic liquids and organic salts via the isocyanate method. The polymerization reactions of a novel siloxanic diacid monomer with 4,4′‐methylene‐bis(4‐phenylisocyanate) MDI were studied in ammonium, phosphonium, and imidazolium‐type organic salts. These poly(amide‐imide‐siloxane)s (PAI‐Si)s were obtained with high yields and good inherent viscosities ranging from 0.30 to 0.55 dL/g. The normally high softening temperatures and poor solubility of PAIs in organic solvents were improved via the incorporation of the flexible siloxane segments into the polymer backbone. The PAI‐Sis showed glass transition temperatures around 100°C and their 10% mass loss was about 300°C. They have a char yield in the range of 30–40% at 800°C. Calculated limiting oxygen index values of the polymers were about 30; therefore, they can be considered as self‐extinguishing. The dielectric constants of these silane‐containing PAIs (2.5) are lower than common siloxane‐free polyimides (~ 3). Their good thermal stability, enhanced solubility, and low dielectric constants suggest they may function as electrical insulators. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Blends of poly(ether imide) (PEI, Ultem 1000) and an aromatic poly(ether amide) were studied. Although homogeneous or heterogeneous blends can be obtained depending on the blend preparation method, the inherent miscibility of the mixture was finally established. The so-called enthalpy relaxation method was used to detect one or two glass transition temperatures in the blends in spite of the similarity of the pure component transitions. Fourier transform infrared analysis provided additional evidence of the specific interactions, which could be in the origin of the miscibility. A preliminary study of the influence of the homogeneity level in the transport properties of the blend films was also undertaken. Carbon dioxide at 1 bar was used as a penetrant. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2141–2149, 1998  相似文献   

7.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   

8.
The preparation of a new unsymmetrical kink non‐coplanar heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(3‐phenyl‐4‐aminophenoxy)phenyl]‐(2H)phthalazin‐1‐one (3), from a readily available unsymmetrical phthalazinone bisphenol‐like (1) was described. The diamine can be directly polymerized with various aromatic bis(trimellitimide)s (4a–e) by using triphenyl phosphite and pyridine as condensing agents to give a series of new aromatic poly(amide imides) (5a–e) containing the kink non‐coplanar phthalazinone heterocyclic units with inherent viscosities of 0.57–1.06 dL/g. The polymers were readily soluble in a variety of solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidinone, and even in pyridine and m‐cresol and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 315–340°C, and the temperatures for 5% weight loss in nitrogen were in the range of 487–512°C. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1516–1520, 2004  相似文献   

9.
Novel amic acid diamines (AADs) (2‐carboxyterephthalamido‐bis(alkyl or aryl amine)s, H2N? X? NH(O?)C? C6H3(COOH)? C(?O)NH? X? NH2, where X is were synthesized by reacting trimellitic anhydride chloride with aromatic or aliphatic diamines in dimethylformamide at 5–10 °C. Poly(amide imide)s (PAIs) with an amide to imide ratio of three in the polymer chains were prepared by interfacial polycondensation of the AADs in aqueous alkaline solution with isophthaloyl chloride or terephthaloyl chloride in dichloromethane at ambient temperature to form poly(amide amic acid)s, followed by their subsequent thermal cycloimidization. All of the PAIs were soluble in polar aprotic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide and N‐methylpyrrolidone, and have inherent viscosities in the range 0.15–0.48 dL g?1. The polymers were characterized by IR and NMR spectroscopy, TGA and DSC techniques. The PAIs have initial decomposition temperatures in the range 250–460 °C in air, and glass transition temperatures of 128–320 °C, depending upon the structures of the monomers. Composite membranes containing a poly(amide amic acid) and poly(amide imide) barrier layer on the top of a porous polyethersulfone support were prepared by in situ interfacial polymerization of the AADs in aqueous alkaline solution with trimesoyl chloride in hexane, and subsequent curing. The performances of these membranes were evaluated by using aqueous feed solutions containing 2000 ppm NaCl, Na2SO4 or CaCl2. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
A series of fluorinated polyimides and fluorinated poly(imide amide)s containing pendent cyano groups were prepared and investigated to determine their dielectric constants as a function of relative humidity and thermal characteristics. The fluorinated polymides and fluorinated poly(imide amide)s containing pendent cyano groups were prepared by reaction of bis(4-aminophenoxy) benzonitriles with a fluorinated dianhydride and with a fluorinated di(acid chloride) containing preformed imide rings. The properties of the fluorinated polyimides and fluorinated poly(imide amide)s containing pendent cyano groups were compared with those of fluorinated polyimides and fluorinated poly(imide amide)s prepared from 1,3-bis(4-aminophenoxy)benzene. The introduction of the pendent cyano groups caused an increase in the dielectric constant and an increase in the glass transition temperature of the polymers compared with the polymers prepared without pendent cyano groups.  相似文献   

11.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
Two new napthtrien metal complexes, MNapth2trien; where M = Zn and Ni, were synthesized and used for the synthesis of metal‐containing polyureas and poly(urea‐imide)s. MNapth2trien underwent polymerization reaction with two diisocyanates, namely, 4,4′‐diphenylmethane diisocyanate and isophorone diisocyanate to yield polyureas. Poly(urea‐imide)s were obtained by the synthesis of metal‐containing isocyanate‐terminated polyurea prepolymers from the reaction between MNapth2trien and excess diisocyanates, which could then undergo further reaction with different dianhydrides. The dianhydrides used were pyromellitic dianhydride and benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride. The polymers were characterized by infrared, nuclear magnetic resonance, elemental analysis, X‐ray diffraction, solubility, and viscosity. Glass transition temperature of the polymers was obtained from differential scanning calorimetry and dynamic mechanical thermal analysis. Thermal stability of polymers was studied by thermogravimetric analysis in air. It was found that the resulting metal‐containing polymers exhibited good thermal stability. Initial decomposition temperatures of the polymers depend on the amount of MNapth2trien in the polymer composition. Char yields of metal‐containing poly(urea‐imide)s are higher than those of metal‐containing polyureas. Most metal‐containing polymers show good solubility in organic solvents. Shore D hardness test indicates that metal‐containing poly(urea‐imide)s are hard materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
N‐Trimellitylimido‐L ‐phenylalanine was prepared from the reaction of 1,2,4‐benzenetricarboxylic anhydride with L ‐phenylalanine in N,N‐dimethylformamide solution at refluxing temperature. The direct polycondensation reaction of the monomer imide‐diacid with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylmethane, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, 4,4′‐diaminodiphenylether and benzidine was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrrolidone, pyridine and calcium chloride. The resulting poly(amide–imide)s, PAIs, having inherent viscosities of 0.21–0.45 dlg?1 were obtained in high yield. All of the above compounds were fully characterized by IR spectroscopy and elemental analyses. The optical rotation of all PAIs has also been measured. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2001 Society of Chemical Industry  相似文献   

14.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
Reaction of 5‐amino‐1‐naphthol with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) afforded aromatic diols with preformed imide structure. High temperature solution polycondensation reactions of the obtained diimide‐dinaphthols with aromatic and aliphatic diacid chlorides resulted in the preparation of nine different poly(ester‐imide)s. These were fully characterized, and the physical and thermal properties of the obtained polymer were studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2567–2572, 2003  相似文献   

17.
Novel aromatic poly(amide imide)s (m‐PAIs, m = 8, 12, 16) containing preformed isophthalamide unit and pendent n‐alkyloxy (‐O‐n‐CmH2m+1, m = 8, 12, 16) side chains were prepared in thin films by polymerization of pyromellitic dianhydride (PMDA) with N,N′‐bis(4‐aminophenyl)‐5‐(n‐alkyloxy)isophthalamides (m‐DAs) obtained from N,N′‐bis(4‐nitrophenyl)‐5‐(n‐alkyloxy)isophthalamides (m‐DNs). The m‐PAI films were tough, flexible and transparent with inherent viscosities in the 1.25–1.67 dL/g range in DMAc and soluble in DMAc and NMP on heating. In TGA m‐PAIs began to degrade around 440°C and in DSC no phase transitions were detected. In X‐ray diffractometry the m‐PAIs appeared amorphous with loosely developed layered crystalline structure. In liquid crystal (LC)‐aligning performance measured using 4‐n‐pentyl‐4′‐cyanobiphenyl (5CB) on thin film surfaces rubbed with standard velvet fibers, the m‐PAIs showed homogeneous LC alignment parallel to the rubbing direction with 2.5–17.5° pretilt angles, depending on the rubbing density and n‐alkyloxy side chain length. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
Soluble poly(amide imide) derivatives were prepared through the direct polycondensation of 1,2,4‐benzenetricarboxylic acid and three diamines—bis[4‐(3‐aminophenoxy)phenyl]sulfone, bis(4‐aminophenyl)‐1,4‐diisopropylbenzene, and 4,4′‐oxydianilne—in the presence of metal salts and phosphorous compounds. Phosphonium salt, which was used as the initiating species and was prepared by the reaction of the metal salts and phosphorous compounds, reacted with 1,2,4‐benzenetricarboxylic acid to form acyloxy phosphonium salt, and then the salt was reacted with a diamine for the preparation of the prepolymers. The prepolymers were converted into the corresponding poly(amide imide)s in a homogeneous solution state at 180°C. The poly(amide imide)s showed good thermal and mechanical properties. Glass‐transition temperatures were observed from 240 to 270°C in differential scanning calorimetry traces. A melting endotherm was not observed for the polymers with differential scanning calorimetry. The initial decomposition occurred around 400°C according to thermogravimetric analysis, and major weight loss was observed from 610 to 680°C. The poly(amide imide)s had comparatively good solubility in aprotic polar solvents at concentrations high enough (~30%) for the fabrication of various forms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1399–1407, 2002  相似文献   

19.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

20.
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号