首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of dicumyl peroxide (DCP) content on the gel fraction, mechanical, dynamic mechanical, and thermal properties of linear low‐density polyethylene (LLDPE)/ethylene‐co‐methyl acrylate (EMA) blends were studied. Gel content of the blends increases with increasing DCP content, and EMA is more prone to crosslinking than LLDPE. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) were used to study the effect of DCP crosslinking on percent crystallinity and crystalline structure of the blends and individual components. At lower level of DCP loading, crosslinking process does not have significant effect on the crystalline structure of the LLDPE, which was confirmed from the percent crystallinity and lattice distance value. However, at higher DCP content, percent crystallinity decreases significantly. At lower EMA concentration (<50%), percent crystallinity and lattice distance remain unchanged up to 2 wt % of DCP. For EMA contents of more than 50 wt %, increasing DCP content reduces the crystallinity of the blends and increases the lattice distance. The highest level of mechanical and dynamic mechanical properties was observed for 60/40 LLDPE/EMA blends at 2 wt % DCP. Addition of LLDPE‐g‐MA (3 wt %) as a compatibilizer enhances the properties of the vulcanizates. Blends crosslinked with DCP up to 0.3 wt % can easily be reprocessed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Summary: Blends of poly(propylene) (PP) were prepared with poly[ethylene‐co‐(methyl acrylate)] (EMA) having 9.0 and 21.5% methyl acrylate comonomer. A similar series of blends were compatibilized by using maleic anhydride grafted PP. The morphology and mechanical properties of the blends were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) in tensile mode. The DMA method and conditions were optimized for polymer film specimens and are discussed in the experimental section. The DSC results showed separate melting that is indicative of phase‐separated blends, analogous to other PP‐polyethylene blends but with the added polarity of methyl acrylate pendant side groups that may be beneficial for chemical resistance. Heterogeneous nucleation of PP was decreased in the blends because of migration of nuclei into the more polar EMA phase. The crystallinity and peak‐melting temperature did not vary significantly, although the width of the melting endotherm increased in the blends indicating a change had occurred to the crystals. DMA analysis showed the crystal‐crystal slip transition and glass transition (Tg) for PP as well as a Tg of the EMA copolymer occurring chronologically toward lower temperatures. The storage modulus of PP and the blends was generally greater with annealing at 150 °C compared with isothermal crystallization at 130 °C. The storage modulus of the blends for isothermally crystallized PP increased with 5% EMA, then decreased for higher amounts of EMA. Annealing caused a decrease with increasing copolymer content. The extent of the trend was greater for the compatibilized blends. The Tg of the blends varied over a small range, although this change was less for the compatibilized blends.

Storage modulus for PP and EMA9.0 blends annealed at 150 °C.  相似文献   


3.
The effects of compatibilizing reactions on the viscoelastic properties and morphology of ethylene‐methyl acrylate copolymers were studied. Potentially reactive blends of styrene‐maleic anhydride copolymer (SMAH) and a terpolymer of ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) were compared with a non‐reactive blend of SMAH and an ethylene/methyl acrylate (E‐MA) copolymer with similar rheological properties. Melt mixing was carried out in a batch mixer and in a co‐rotating twin screw extruder. The morphology of the reactive blends showed smaller domain sizes than the non‐reactive blends, and the viscoelastic properties of the blends were very different. The storage and loss moduli and the complex viscosity of the reactive blends were greater than those of non‐reactive blends. The reactive blends had a higher zero shear viscosity, plateau modulus and mean relaxation time than their non‐reactive counterparts, indicating a higher degree of melt elasticity. The melt elasticity was maximum at 25% functionalized ethylene‐methyl acrylate concentration.  相似文献   

4.
A polymeric alloy (SP–A) containing syndiotactic polystyrene (sPS), atactic polypropylene (aPP), and about 66 wt % sPS‐b‐aPP diblock copolymer, was prepared by the sequential feed of monomers in the presence of the half‐titanocene Cp*Ti(OBz)3 (where Cp* is C5Me5 and Bz is PhCH2), modified methylaluminoxane, and external triisobutylaluminum. The effects of the SP–A alloy as a compatibilizer for sPS and isotactic polypropylene (iPP) blends were evaluated. The blending of sPS and iPP, with and without SP–A, was performed in a single‐screw miniextruder with a side channel that allowed the continuous recycling of materials. The influence of SP–A on the mechanical and thermal properties of the immiscible sPS/iPP blends was investigated over a range of composition. The presence of the SP–A alloy resulted in a significant improvement of the impact strength of the blends compared with that of pure sPS and their pure blends. This improvement was particularly obvious in the sPS/iPP (90/10 wt %) blend containing 5 wt % SP–A. Morphological analysis of the impact‐fractured surface of the ternary blends indicated that the sPS‐b‐aPP diblock copolymer contained in the SP–A alloy acted as an efficient compatibilizer by decreasing the dispersed‐phase iPP particle size, improving the interfacial adhesion, and generating a stable microphase‐separated state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1596–1605, 2003  相似文献   

5.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

6.
Potentially reactive blends of styrene–maleic anhydride (SMAH) with ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) and nonreactive blends of SMAH with ethylene/methyl acrylate (E‐MA) were produced in a Brabender batch mixer and in a corotating twin‐screw extruder. The products were characterized in terms of rheology, morphology, and mechanical properties to understand the reaction characteristics between anhydride/epoxy functional groups. Storage modulus, G′, loss modulus, G″ and complex viscosity, η* of the reactive blends were higher than those of nonreactive ones. At 25% E‐MA‐GMA content, maximum in η* was obtained for the reactive blends. The reactive blends showed finer morphology than the nonreactive ones at all concentrations studied. Mechanical characterization showed that reactive SMAH/E‐MA‐GMA blends had higher tensile strength, % strain at break, and tensile modulus than the nonreactive blends for all corresponding modified polyethylene contents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 790–797, 2001  相似文献   

7.
In this study, commercially available epoxidized and maleated olefinic copolymers, EMA‐GMA (ethylene‐methyl acrylate‐glycidyl methacrylate) and EnBACO‐MAH (ethylene‐n butyl acrylate‐carbon monoxide‐maleic anhydride), were used at 0, 5, and 10% by weight to compatibilize the blend composed of ABS (acrylonitrile‐butadiene‐styrene) terpolymer and PA6 (polyamide 6). Compatibilizing performance of these two olefinic polymers was investigated from blend morphologies, thermal and mechanical properties as a function of blend composition, and compatibilizer loading level. Scanning electron microscopy (SEM) studies showed that incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle diameter at the presence of 5% compatibilizer. The crystallization behavior of PA6 phase in the blends was explored for selected blend compositions by differential scanning calorimetry (DSC). At high compatibilizer level a decrease in the degree of crystallization was observed. In 10% compatibilizer containing blends, formation of γ‐crystals was observed contrary to other compatibilizer compositions. The behavior of the compatibilized blend system in tensile testing showed the negative effect of using excess compatibilizer. Different trends in yield strengths and strain at break values were observed depending on compatibilizer type, loading level, and blend composition. With 5% EnBACO‐MAH, the blend toughness was observed to be the highest at room temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 926–935, 2007  相似文献   

8.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The effect of methyl acrylate content in ethylene–methyl acrylate–acrylic acid (E–MA–AA) terpolymers and acrylic acid content in ethylene–acrylic acid (E–AA) copolymers was investigated in blends of these two materials. The E–MA–AA terpolymer with 8 mol % methyl acrylate was not miscible with any E–AA material no matter what the AA content, whereas the terpolymer with only about 2 mol % methyl acrylate was miscible, at least to some extent, with the E–AA copolymer at high acrylic acid contents. Evidence supporting this conclusion derived from gloss, differential scanning calorimetry testing, and dynamic mechanical measurements. For the E–AA polymer material with the highest acid content, there was a synergistic effect for some properties at low added amounts of E–MA–AA copolymer; the tensile strength and hardness were 10% higher than values for the E–AA copolymer, even though the E–AA copolymer was much stiffer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2216–2222, 2004  相似文献   

10.
Blends of soy protein isolate (SPI) with 10, 20, 30, 40, and 50% poly(ethylene‐co‐ethyl acrylate‐co‐maleic anhydride) (PEEAMA), with or without addition of 2.0 wt % methylene diphenyl diisocyanate (MDI), were prepared by mixing with an intensive mixer at 150°C for 5 min, and then milling through a 1‐mm sieve. Blends were then compression‐molded into a tensile bar at 140°C. Thermal and mechanical properties and water absorption of the blends were studied by differential scanning calorimetry (DSC), dynamical mechanic analysis (DMA), a test of modulus and tensile strength (with an Instron tensile tester), a water absorption test, and scanning electron microscopy (SEM). The blends showed two composition‐dependent glass transition temperatures. Furthermore, as the SPI content increased, the melting temperature of PEEAMA remained constant but the heat of fusion decreased. These results indicate that SPI and PEEAMA were partially miscible. Morphology observations support these results. Increasing the PEEAMA content resulted in decreases in the modulus and tensile strengths and increases in the elongation and toughness of the blends. Water absorption of the blends also decreased with increased PEEAMA content. Incorporating MDI further decreased the water absorption of the blends. The mechanism of water sorption of SPI was relaxation controlled, and that of the blends was diffusion controlled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 407–413, 2003  相似文献   

11.
The phase behavior and the crystallization kinetics of blends composed of isotactic polypropylene (iPP) and linear low‐density polyethylene (LLDPE) were investigated by differential scanning calorimetry. The phase behavior indicates the formation of separate crystals of iPP and LLDPE at each investigated blend composition. The crystallization trace reveals that iPP crystallizes in its normal range of temperatures (i.e., at temperatures higher than that of LLDPE), when its content in the blend is higher than 25% by weight. In the blend whose iPP content is as high as 25%, at least a portion of iPP crystallizes at temperatures lower than that of LLDPE. This behavior has been proposed by Bassett to be attributed to a change in the kind of nucleation from heterogeneous to homogeneous. From the Avrami analysis of the isothermal crystallization of iPP in the presence of molten LLDPE, n values close to 2 are always obtained. According to our previously proposed interpretation of the Avrami coefficient, it can be related to the crystallite fractal dimension, through d = n + 1, which gives values close to 3, according to the spherulitic observed morphology. The kinetics parameter, i.e., the half‐time of crystallization, and the kinetic constant k show that a decrease in the overall rate of crystallization of iPP occurs on blending. Optical microscopy photographs, taken during the cooling of the samples from the melt, confirm the above results and show increasingly less resolved spherulite texture on increasing LLDPE content in the blend. The diffusion parameters evaluated for the neat polymers and for the blends in dichloromethane, which give information on the miscibility in the amorphous state, show that the diffusional behavior of the blends is governed by iPP, suggesting a two‐phase amorphous state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3338–3346, 2003  相似文献   

12.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

13.
The calorimetric characteristics of carbon black (CB)/poly(ethylene‐co‐alkyl acrylate) composites depend on both the CB and acrylate contents. An increase of the acrylate content in the pure copolymers tends to decrease all the crystalline characteristics: Tc,n, the nonisothermal crystallization temperature; Tm, the melting temperature, and ΔHm, the melting enthalpy. CB modifies the crystallization kinetics of poly(ethylene‐co‐ethyl acrylate) (EEA) alone and in blends with poly(ethylene‐co‐24% w/w methyl acrylate) (24EMA) and poly(ethylene‐co‐35% w/w methyl acrylate) (35EMA). In the presence of CB, Tc,n, the nonisothermal crystallization temperature of EEA, increases and t1/2, the half‐crystallization time, decreases for a given isothermal crystallization temperature, Tc,i. The thermograms obtained during the melting of EEA after isothermal crystallization show multiple endotherms, suggesting that crystalline‐phase segregation has occurred. The existence of different crystalline species can be explained by the presence of fractions of different acrylate content in the copolymers as shown by SEC. Therefore, CB does not seem to have much effect on the subsequent melting temperature of EEA, Tm,s. CB also induces a lower melting enthalpy, Δ Hm, in the blends. This decrease of ΔHm appears to be constant whatever the compound, but when reported to the melting enthalpy of the polymer without CB, δΔHmHm increases with the acrylate content. A slight increase of the amorphous phase stiffness after CB introduction is noticed: The Tg of EEA/24EMA and EEA/35EMA blends increases by several degrees. Therefore, plotting ΔHm versus ΔCp shows that for the same ΔHm the ΔCp is lower in CB‐filled samples, suggesting there is some kind of rigid amorphous phase not contributing to the glass transition. We propose to explain the CB activity during the crystallization process by the existence of molecular interactions between CB and acrylate groups rather than by a pure nucleating effect. Thus, the increase of Tc,n and the decrease of ΔHm could be explained by the fact that CB separates acrylate‐rich chains from the crystallization medium, accelerating the crystallization of the acrylate‐poor chains. During such a crystallization process, CB may be preferentially localized in the more polar amorphous phase and scattered between the two crystalline phases of EEA and EXA. These blends of poly(ethylene‐co‐alkyl acrylate) copolymers with CB provide interesting materials with adjustable properties depending on the acrylate and CB contents and on the thermomechanical treatments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 779–793, 2001  相似文献   

14.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

15.
The thermal stability of vulcanizates of low‐density polyethylene (LDPE), poly(dimethyl siloxane) (PDMS) rubber, and their blends was studied by nonisothermal thermogravimetry. Four ethylene copolymers [ethylene methyl acrylate (EMA), ethylene vinyl acetate, ethylene acrylic acid, and a zinc‐salt‐based ionomer (Lotek 4200)] were used as compatibilizers for the blend systems. The thermograms and derivatograms of the blends showed that thermal degradation took place in two stages, whereas those for the base polymers showed single‐stage degradation. Kinetic studies of the blends and pure components showed that the degradation followed first‐order reaction kinetics. The activation energy at 10% degradation was determined with the Freeman–Carroll method and was at a maximum (42.34 kcal/mol) for the 25:75 LDPE/PDMS rubber blend. The half‐life at 200°C was evaluated by the Flynn–Wall method and was at a maximum (812.5 days) for the same blend. Out of four compatibilizers, EMA showed the maximum activation energy (34.25 kcal/mol) for degradation and a maximum half‐life (695.3 days), indicating that EMA was the best compatibilizer for the blend system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 635–642, 2003  相似文献   

16.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (E‐MA‐GMA) is employed to improve the impact toughness of poly(l ‐lactic acid) (PLLA)/thermoplastic polyurethane (TPU) blends by reactive melt‐blending. The reaction and miscibility between the components are confirmed by Fourier transform infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. A super‐tough PLLA/TPU/E‐MA‐GMA multiphase blend (75/10/15) exhibits a significantly improved impact strength of 77.77 kJ m?2, which is more than 17 times higher than that of PLLA/TPU (90/10) blend. A co‐continuous‐like TPU phase structure involving E‐MA‐GMA phase at the etched cryo‐fractured surface and the high‐orientated matrix deformation at the impact‐fractured surface are observed by scanning electron microscopy. The high‐orientated matrix deformation induced by the co‐continuous TPU phase structure is responsible for the super toughness of PLLA/TPU/E‐MA‐GMA blends.  相似文献   

18.
Blends of two semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly‐p‐dioxanone (PPD) have been prepared by solvent casting in different compositions. Thermal, morphological, and mechanical properties of the blends were studied using modulated differential scanning calorimetry, wide‐angle X‐ray diffractometry, scanning electron microscopy (SEM), polarizing light microscopy (PLM), and tensile tests. Thermal analysis showed two glass transition temperatures nearly constant and equal to the values of the homopolymers and constant values of melting temperature (Tm) for all blend compositions, suggesting that both polymers are immiscible. The PLM and SEM observations validated these results, and showed the different morphology obtained by changing the composition of the blend. The blends 40/60, 50/50, and 60/40 presented a clearly macroseparated system, while the 20/80 and 80/20 blends presented better homogeneity, probably due to the low amount of one component in the other. It was found by PLM that PPD is able to crystallize according to a spherulitic morphology when its content is above 40%. Under this content, the crystallization of PPD is hardly observed. The blend 20/80 is more flexible, and tough material and neck formation during elongation is also observed, due to PPD, which may act as a plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2744–2755, 2003  相似文献   

19.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Crushed tire rubber particles (CR) have been dispersed into a recycled poly(carbonate) matrix (rPC) to obtain an eco‐friendly plastic (EFP). A positive synergy was expected from the association of an elastomeric phase to a tough thermoplastic matrix, helping on the other hand to develop a plastic with low impact on the environment. Mechanical melt‐mixing alone cannot provide a suitable interface, and led to blends with poor mechanical properties. Consequently, we have investigated different strategies to improve the EFP properties: First, the rubber surface has been treated by flaming or washing with dichloromethane and second, two copolymers, poly(ethylene‐co‐ethyl acrylate‐tert‐hydroxyl methacrylate) (E‐EA‐MAH) and poly(ethylene‐co‐methyl acrylate‐ter‐glycidyl methacrylate) (E‐MA‐GMA), were used to compatibilize CR particles with rPC matrix by reactive melt‐mixing in an internal mixer. The resulting blends mechanical properties were studied through static tension experiments and interpreted to the light of electronic microscopy fractography analysis and nanoindentation experiments. Significant gain of mechanical properties can be obtained by decreasing CR size under 140 μm (especially for CR contents between 5 and 20% m/m). To reach similar properties with rubber particles of diameter over 140 μm (but under 350 μm), it is necessary to activate their surface by either dichloromethane washing or flaming. Additional use of a compatibilizer extends the plastic behaviour domain of the EFP. rPC‐20% w/w CR is the best alternative material of our study. POLYM. ENG. SCI., 47:1768–1776, 2007. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号