首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two gas chromatography (GC) procedures were compared for routine analysis of trans fatty acids (TFA) of vegetable margarines, one direct with a 100-m high-polarity column and the other using argentation thin-layer chromatography and GC. There was no difference (P>0.05) in the total trans 18∶1 percentage of margarines with a medium level of TFA (∼18%) made using either of the procedures. Both methods offer good repeatability for determination of total trans 18∶1 percentage. The recoveries of total trans isomers of 18∶1 were not influenced (P>0.1) by the method used. Fatty acid composition of 12 Spanish margarines was determined by the direct GC method. The total contents of trans isomers of oleic, linoleic, and linolenic acids ranged from 0.15 to 20.21, from 0.24 to 0.99, and from 0 to 0.47%, respectively, and the mean values were 8.18, 0.49, and 0.21%. The mean values for the ratios [cis-polyunsaturated/(saturated +TFA)] and [(cis-polyunsaturated + cis-monounsaturated)/(saturated +TFA)] were 1.25±0.39 and 1.92±0.43, respectively. Taking into account the annual per capita consumption of vegetable margarine, the mean fat content of the margarines (63.5%), and the mean total TFA content (8.87%), the daily per capita consumption of TFA from vegetable margarines by Spaniards was estimated at about 0.2 g/person/d.  相似文献   

2.
Trans fatty acids in Canadian margarines: Recent trends   总被引:4,自引:4,他引:0  
The fatty acid composition and the trans fatty acid content of the top-selling 109 Canadian margarines were determined by a combined capillary gas-liquid chromatography/infrared spectroscopy method. The 109 brands accounted for 68% of the margarine brands sold in Canada and represented 74% of the market share. The mean level of total trans content in tub margarines (n=79) was 18.8% (g/100 g fatty acids) and ranged from 0.9 to 46.4%. The most frequent occurrence of trans in tub margarines was in the 15–20% range; 48 of the 79 tub brands were in this range but seven brands contained more than 40% trans. The trans content of hard margarines (n=30) ranged from 16.3 to 43.7% and the mean value was 34.3%. In 20 of the 109 brands, the levels of trans,trans isomers of linoleic acid exceeded the maximum level of 1% recommended for Canadian margarines. The levels of cis,trans/trans,cis isomers of linoleic acid were also high; 78 brands contained more than 1% and in 16 brands, the levels were in the 6–7% range. Linoleic acid content in the 109 brands ranged from 1.0 to 45.2% and averaged 18.3%. In 33 samples, linoleic acid was below the level of 5% recommended by an ad hoc committee of Health Canada. Moreover, in these, the total trans content exceeded 30%, and trans polyunsaturated fatty acid level was greater than 5%. There were eight margarines prepared from nonhydrogenated fat and their total trans content was below 2.5%. From the trans content and market share of each of the margarine brands, the average intake of trans fatty acids from margarine was estimated as 0.96 g/person/d. The intake of trans fatty acids in Canada from various sources was previously estimated by us as 8.4 g/person/d. Thus it is suggested that only 11% of the dietary trans fatty acids are supplied by margarines and the majority of trans fatty acids in the Canadian diet is derived from hidden fats in fast foods and bakery products.  相似文献   

3.
The fatty acid composition of 39 mature human milk samples from four Spanish women collected between 2 and 18 weeks during lactation was studied by gas chromatography. The conjugated linoleic acid (CLA) isomer profile was also determined by silver‐ion HPLC (Ag+‐HPLC) with three columns in series. The major fatty acid fraction in milk lipids throughout lactation was represented by the monounsaturated fatty acids, with oleic acid being the predominant compound (36–49% of total fatty acids). The saturated fatty acid fraction represented more than 35% of the total fatty acids, and polyunsaturated fatty acids ranged on average between 10 and 13%. Mean values of total CLA varied from 0.12 to 0.15% of total fatty acids. The complex mixture of CLA isomers was separated by Ag+‐HPLC. Rumenic acid (RA, cis‐9 trans‐11 C18:2) was the major isomer, representing more than 60% of total CLA. Trans‐9 trans‐11 and 7‐9 (cistrans + transcis) C18:2 were the main CLA isomers after RA. Very small amounts of 8‐10 and 10‐12 C18:2 (cis‐trans + trans‐cis) isomers were detected, as were different proportions of cis‐11 trans‐13 and trans‐11 cis‐13 C18:2. Although most of the isomers were present in all samples, their concentrations varied considerably.  相似文献   

4.
Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis‐to trans‐isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α‐linolenate and methyl γ‐linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis‐ and trans‐type of 18:2ME. We also report the identification method of cis‐ and trans‐type of FAME using equivalent chain lengths and attempt the identification of cis‐ and trans‐type of 18:2ME isomers from partially hydrogenated canola oil.  相似文献   

5.
A Canadian Atlantic herring oil hydrogenated for margarine use to an iodine value of 76 and melting point of 32.5 C was found to have 30% saturated acids and 66% monounsaturated fatty acids. The monounsaturated fatty acids could be analytically determined ascis andtrans isomers by open tubular gas liquid chromatography.Trans acids were 33% of the C16 and C18 monounsaturated acids, and 32 and 28%, respectively, of the C20 and C22 monounsaturated acids. After separation of geometric isomers by Florisil-silver nitrate chromatography the positional isomers in each class were determined by oxidative fission. The double bond positions of the originalcis fatty acids were largely retained in bothcis andtrans isomers, but additional isomers were observed, especially in thetrans fatty acids.  相似文献   

6.
Heating of borage oil, either under vacuum as a model or during steam-vacuum deodorization, produces artifacts that are geometrical isomers of γ-linolenic acid (cis-6,cis-9,cis-12 18∶3 acid). In a first approach, we have studied the behavior of these fatty acids in the form of either methyl or isopropyl esters on two capillary columns (CP-Sil 88 and DB-Wax). From this study, it appears that the DB-Wax capillary column is the best suited analytical tool to study in some detail γ-linolenic acid geometrical isomers. In a second approach, the structure of these isomers was formally established by combining several analytical techniques: Argentation thin-layer chromatography, comparison of the equivalent chainlengths with those of isomers present in NO2-isomerized borage oil on two different capillary columns, partial hydrazine reduction, oxidative ozonolysis, gas chromatography coupled with mass spectrometry and gas chromatography coupled with Fourier transform infrared spectroscopy. The two main isomers that accumulate upon heat treatments are thetrans-6,cis-9,cis-12 andcis-6,cis-9,trans-12 18∶3 acids with minor amounts ofcis-6,trans-9,cis-12 18∶3 acid. One di-trans isomer, supposed to be thetrans-6,cis-9,trans-12 18∶3 acid, is present in low although noticeable amounts in some of the heated oils. The content of these artificial fatty acids increases with increasing temperatures and duration of heating. The degree of isomerization (DI) of γ-linolenic acid is less than 1% when the oil is deodorized at 200°C for 2 h. Heating at 260°C for 5 h increases the DI up to 74%. Isomerization of γ-linolenic acid resembles that of α-linolenic (cis-9,cis-12,cis-15 18∶3) acid in several aspects: The same kinds and numbers of isomers are formed, and similar degrees of isomerization are reached when the octadecatrienoic acids are heated under identical conditions. It seems that the reactivity of a double-bondvis-à-vis cis-trans isomerization is linked to its relative position, central or external, and not to its absolute position (Δ6, 9, 12 or 15).  相似文献   

7.
Positional and geometrical isomers of monounsaturated long chain fatty acids were analyzed by the combination of high performance liquid chromatography (HPLC) and glass capillary gas chromatography (GC). A preparative group separation ofcis andtrans isomers of the monounsaturated fatty acid methyl esters was achieved according to chain length by reversed-phase HPLC, and using a highly sensitive interference refractive index detector. After collection of the different fractions containingcis andtrans forms of the monounsaturated fatty acid methyl esters, the fractions were analyzed for their content of positional isomers using glass capillary GC with Silar-5 CP as stationary phase. The preparative step in the HPLC was also used analytically for the determination of the ratio between thecis andtrans monounsaturated fatty acids. A comparison was made between the results obtained with the HPLC technique and the results of a GLC technique with a packed OV-275 column. There was a good correlation between the 2 techniques with a tendency to highertrans values with the HPLC technique (4%). It was shown with reference substances that 18∶1ω6-cis to ω11-cis and 18∶1ω5-trans to ω12-trans, the most common monounsaturated fatty acid isomers in partially hydrogenated vegetable oils, could be almost quantitatively recovered in the HPLC step. Most of the individual positional isomers of monounsaturated fatty acids of varying chain length could be separated and determined in the glass capillary GC step with the exception of those isomers containing the double bond in a relatively high ω-position. The relative standard deviation of the technique as determined with reference substances was better than 4%. The described technique was applied to the analysis of the isomeric monounsaturated fatty acid content in partially hydrogenated vegetable and marine oils, and about 5 samples a day could be executed. Part of this work has been presented at the ISF/AOCS World Congress, New York (1980)JAOCS 58, (4), 1981, abstr. no. 184.  相似文献   

8.
Trans fatty acids from hydrogenated vegetable and marine oils could be as hypercholesterolemic and atherogenic as saturated fatty acids. Hence, it is important to know the fatty acid composition in major food contributors, e.g., margarines and shortenings. In 1992 margarines were examined, and in 1995 brands covering the entire Danish market were examined. Significant amounts oftrans-18∶1 were found only in hard margarines (mean: 4.2±2.8%) and shortenings (mean: 6.8 ±3.1%), whereas the semisoft and soft margarines contained substantially lesstrans-18∶1 in 1995 than in 1992. Where marine oils had been used to a larger degree the meantrans-monoenoic content was about 15%, of which close to 50% was made up of long-chain (C20 and C22)trans fatty acids. A note-worthy decrease in the content oftrans-18∶1 had occurred for the semisoft margarines, from 9.8±6.1% in 1992 to 1.2±2.2% in 1995. Calculated from sales figures, the supply oftrans-18∶1 plus saturated fatty acids from margarines had decreased over this three-year period by 1.4 g/day, which has been replaced bycis monounsaturated and polyunsaturated fatty acids.  相似文献   

9.
Samples of polyunsaturated margarines, table margarines, hard cube polyunsaturated vegetable oil, hard cube vegetable oil, animal fat, and blends of vegetable oil and animal fat were analyzed for fatty acid composition, percentage ofcis,cis-methylene interrupted polyunsaturated fatty acids, percentage isolatedtrans-unsaturation, and percentage conjugated diene. Gas liquid chromatography was used to separate and measure the geometric isomers of the octadecaenoic and octadecadienoic acids. Selected samples were analyzed for the content of positional isomers in theircis monoene andtrans monoene fractions, and for the percentage of fatty acid esterified in the 2-position of their triglycerides.  相似文献   

10.
A combined capillary gas liquid chromatography (GLC) and infrared spectrophotometry (IR) method is described for the determination ofcis andtrans-octadecenoic acids in margarines made from partially hydrogenated vegetable oils. The totaltrans-unsaturation of margarine fatty acid methyl esters determined by IR, with methyl elaidate as the external standard, was correlated to the capillary GLC weight percentages of the componenttrans fatty acid methyl esters by the mathematical formula: IRtrans=%18∶1t+0.84×%18.2t+1.74×%18∶2tt+ 0.84×%18∶3t where 0.84, 1.74 and 0.84 are the correction factors which relate the GLC weight percentages to the IRtrans-equivalents for mono-trans-octadecadienoic (18∶2t),trans, trans-octadecadienoic (18∶2tt) and mono-trans-octadecatrienoic (18∶3t) acids, respectively. This formula forms the basis for the determination of totaltrans-andcis-octadecenoic acids in partially hydrogenated vegetable oils. From the weight percentages of 18∶2t, 18∶2tt and 18∶3t determined by capillary GLC on a cyanosilicone liquid phase and the totaltrans-unsaturation by IR, the percentage of the totaltrans-octadecenoic acids (18∶1t) is calculated using the formula. The difference between the total octadecenoic acids (18∶1), determined by capillary GLC, and the 18∶1t gives the totalcis-octadecenoic acids. Presented in part at the 81st Annual Meeting of the American Oil Chemists' Society, Baltimore, Maryland, April 22–25, 1990.  相似文献   

11.
A procedure is described for gas liquid chromatographic determination of cis andtrans isomers of unsaturated fatty acids after fractionation of the saturated, monenoic, dienoic, and polyenoic fatty acid methyl esters by argentation thin layer chromatography. To test its reliability, the procedure was used for quantitative measurement of transisomers of unsaturated fatty acids in a known mixture of simple triglycerides containing saturated fatty acids from 4:0 to 24:0 andcis andtrans isomers of 14:1. 16:1, 18:1, and 18:2. Results of the analyses of five margarine and five butter samples are presented, together with results of infrared spectrophotometric analyses fortrans fatty acid concentrations, ultraviolet spectrophotometric analyses for conjugated fatty acid concentrations, and enzymatic analyses forcis-cis-methylene interrupted fatty acid concentrations. The combined argentation thin layer and gas Chromatographic procedure is suitable for determination of the principal fatty acids in complex food lipids such as milk fat.  相似文献   

12.
Several marine oils and seed oils on the market contain relevant quantities of stearidonic acid (18:4n‐3, SDA). The formation of 18:4n‐3 trans fatty acids (tFA) during the refining of these oils necessitates the development of a method for their quantification. In this study, 18:4n‐3 was isolated from Ahiflower and isomerized to obtain its 16 geometric isomers. The geometric isomers of 18:4n‐3 were isolated by silver ion HPLC (Ag+‐HPLC) and characterized by partial reduction with hydrazine followed by gas chromatography analysis. The elution order of all 16 isomers was established using a 100 m × 0.25 mm 100% poly(biscyanopropyl siloxane) capillary column and at the elution temperature of 180 °C. The 4 mono‐trans‐18:4n‐3 isomers produced during the refining of oils rich in 18:4n‐3 were chromatographically resolved from each other, but c6,t9,c12,c15‐18:4 coeluted with the tetra‐cis isomer. These 2 fatty acids (FA) were resolved by reducing the separation temperature to 150 °C, but this change caused tetra‐cis‐18:4n‐3 to coelute with t6,c9,c12,c15–18:4. Combining the results from 2 isothermal separations (180 and 150 °C) was necessary to quantify the 4 mono‐trans 18:4n‐3 FA in Ahiflower oil.  相似文献   

13.
The intake of trans C18:1 as well as of trans hexadecenoic acids (trans C16:1) is believed to be related with numerous physiological disadvantages, such as the risk of coronary heart disease. Since most of the existing data on trans C16:1 contents in human milk fat have been determined without a pre‐separation by thin‐layer chromatography (TLC), the gas chromatographically determined contents of trans C16:1 frequently are too high due to overlaps with C17 fatty acids. Using a highly polar column with a length of 100 m after AgNO3‐TLC allowed to establish an average content of total trans C16:1 of 0.15 ±0.04% from 39 samples of human milk fat. Moreover, the C16:1 positional isomers trans Δ4, Δ5, Δ6/7, Δ8, Δ9, Δ10, Δ11, Δ12, Δ13 and Δ14 could be quantified from 15 samples exhibiting mean relative contents of 2.6, 3.5, 7.6, 7.2, 24.7, 10.4, 10.1, 14.3, 8.4 and 11.3% related to the total trans C16:1 content, respectively. Also, the C16:1 isomer trans Δ3 could be identified occurring in traces with a mean absolute content of 2 mg/100 g fatty acids. A baseline separation of almost all trans isomers could be achieved for the first time. Further, mass spectrometric analyses of FAME and DMOX derivatives allowed to identify the isomer trans Δ4. Among the C16:1 isomers cis Δ7 to cis Δ14 the isomer cis Δ9 predominated with a relative proportion of 68.3% and an absolute content of 1.88% of all fatty acids. Correspondingly, among the C17:1 isomers cis Δ7 to cis Δ11 the isomer cis Δ9 with 82.6% had the highest relative content.  相似文献   

14.
A total of 82 dietary fats sold on the Bulgarian market in the period 1995—2000 were analyzed. The samples included 68 table margarines (50 of which were imported), 10 frying fats (6 imported) and 4 salad dressings (all imported). A validated analytical method, thin‐layer chromatography‐AgNO3‐densitometry, was used. It enabled direct determination of all fatty acid groups, differing by degree of unsaturation and double bonds geometry. Low levels of trans fatty acids (TFA) down to 0.1% of the total for mono trans‐trienoic (Tcct) and mono trans‐dienoic (Dct), and down to 0.2% for trans‐monoenoic (Mt) were quantitated, with an error under 3% and a standard deviation of 0.1—1.5. The total content of TFA in table margarines varied from 0 to 26.9% with a mean value of 8.6 ± 7.2% for imported and 1.6 ± 3.4% for Bulgarian samples. Saturated fatty acids (SFA) content varied from 11.5 to 45.7%, with a mean value of 25.4 ± 5.7% for imported and 26.9 ± 5.2% for Bulgarian margarines. A general trend of lower levels of TFA and SFA in imported margarines was observed over the studied period. Additionally, the content of individual saturated fatty acids was determined by gasliquid chromatography in 37 of all studied samples.  相似文献   

15.
The aim of the present study was to identify and quantitatetrans isomers of C18 fatty acids in some French infant formulas. Twenty powdered infant formulas were purchased in pharmacies and supermarkets in order to assess theirtrans mono- and poly-unsaturated fatty acids content. The fatty acid profiles were examined using methyl and isopropyl ester derivatives. The combination of gas-liquid chromatography, high-performance liquid chromatography, and silver nitrate thin-layer chromatography was needed to describe the detailed fatty acid compositions of the samples, includingtrans isomers of unsaturated C18 fatty acids. All the samples containedtrans isomers of C18∶1 acid (mean level 1.97±0.28% of total fatty acids), with vaccenic acid being generally the major isomer (15 out of 20 samples), thus indicating the origin from bovine milk. All the formulas also contained various isomers of linoleic and α-linolenic acids, but at lower levels.Trans PUFA isomers are the same as those present in deodorized oils. In conclusion, all the infant formulas analyzed in this study contained sometrans fatty acids, including isomers of essential fatty acids. This should be taken into account in the dietary intake of the newborn.  相似文献   

16.
Position and configuration isomers of conjugated linoleic acid (CLA), from 7, 9‐ through 12, 14‐C18:2, were synthesized by directed sequential isomerizations of a mixture of rumenic (cis‐9, trans‐11 C18:2) and trans‐10, cis‐12 C18:2 acids. Indeed, the synthesized conjugated fatty acids cover the range of unsaturated systems as found in milk fat CLA. The two‐step sequence consisted in initial sigmatropic rearrangement of cis/trans CLA isomers at 200 °C for 13 h under inert atmosphere (Helium, He), followed by selenium‐catalyzed geometrical isomerization of double bonds at 120 °C for 20 h under He. Product analysis was achieved by gas‐liquid chromatography using a 120 m polar capillary column coated with 70% cyanoalkylpolysiloxane equivalent polymer. Migration of conjugated systems was geometrically controlled as follows: the cis‐Cn, trans‐Cn+2 double bond system was rearranged through a pericyclic [1, 5] sigmatropic mechanism into a trans‐Cn‐1, cis‐Cn+1 unsaturated system, while the trans‐Cn, cis‐Cn+2 double bond system was rearranged through a similar pericyclic mechanism into a cis‐Cn+1, trans‐Cn+3 unsaturated system. Selenium‐catalyzed geometrical isomerization under mild conditions then allowed cis/trans double bond configuration transitions, resulting in the formation of all cis, all trans, cis‐trans and trans‐cis isomers. A sequential combination of the two reactions resulted in a facile controlled synthesis of CLA isomers, useful for the chromatographic identification of milk fat CLA, as well as for the preparation of CLA standard mixture.  相似文献   

17.
The successive steps of an integrated analytical procedure aimed at the accurate determination of butterfat fatty acid composition, includingtrans-18:1 acid content and profile, have been carefully checked. This sequential procedure includes: dispersion of a portion of butter in hexane/isopropanol (2:1, vol/vol) with anhydrous Na2SO4, filtration of aliquots of the suspension through a microfiltration unit, subsequent preparation of fatty acid isopropyl esters (FAIPE) with H2SO4 as a catalyst, and analysis of total FAIPE by capillary gas-liquid chromatography (GLC). Isolation oftrans-18:1 isomers was by silver-ion thin-layer chromatography (Ag-TLC), followed by extraction from the gel of combined saturated andtrans-monoenoic acids with a biphasic solvent system. Analysis of these fractions by GLC allows the accurate quantitation oftrans-18:1 acids with saturated acids (14:0, 16:0, and 18:0) as internal standards. A partial insight in the distribution oftrans-18:1 isomers can be obtained by GLC on a CP Sil 88 capillary column (Chrompack, Middelburg, The Netherlands). All steps of the procedure are quite reproducible, part of the coefficients of variation (generally less than 3%, mainly limited to butyric and stearic acids) being associated with GLC analysis (injection, integration of peaks) and, to a lesser extent, to FAIPE preparation. FAIPE appear to be of greater practical interest than any other fatty acid esters, including fatty acid methyl esters (FAME), for the quantitation of short-chain fatty acids, because peak area percentages, calculated by the integrator coupled to the flame-ionization detector, are almost equal (theoretically and experimentally) to fatty acid weight percentages and do not require correction factors. With this set of procedures, we have followed in detail the seasonal variations of fatty acids in butterfat, with sixty commercial samples of French butter collected at five different periods of the year. Important variations occur around mid-April, when cows are shifted from forage and concentrates during winters spent in their stalls to fresh grass in pastures. At this period, there is a decrease of 4:0–14:0 acids and of 16:0 (−2 and −6%, respectively), while 18:0 andcis- plustrans-18:1 acids rise suddenly (2 and 5%, respectively). These modifications then progressively disappear until late fall or early winter. Other variations are of minor quantitative importance. Although influenced by the season, the content of 18:2n-6 acid lies in the narrow range of 1.2–1.5%.Trans-18:1 acids, quantitated by GLC after Ag-TLC fractionation, are at their highest level in May–June (4.3% of total fatty acids), and at their lowest level between January and the end of March (2.4%), with a mean annual value of 3.3%. The proportion of vaccenic (trans-11 18:1) acid, relative to totaltrans-18:1 isomers, is higher in spring than in winter, with intermediate decreasing values in summer and fall, which supports the hypothesis that the level of this isomer is linked to the feed of the cattle, and probably to the amount of grass in the feed.  相似文献   

18.
Laverroux S  Glasser F  Gillet M  Joly C  Doreau M 《Lipids》2011,46(9):843-850
In ruminants, cis and trans C18:1 isomers are intermediates of fatty acid transformations in the rumen and their relative amounts shape the nutritional quality of ruminant products. However, their exact synthetic pathways are unclear and their proportions change with the forage:concentrate ratio in ruminant diets. This study traced the metabolism of vaccenic acid, the main trans C18:1 isomer found in the rumen, through the incubation of labeled vaccenic acid with mixed ruminal microbes adapted to different diets. [1-13C]trans-11 C18:1 was added to in vitro cultures with ruminal fluids of sheep fed either a forage or a concentrate diet. 13C enrichment in fatty acids was analyzed by gas-chromatography-mass spectrometry after 0, 5 and 24 h of incubation. 13C enrichment was found in stearic acid and in all cis and trans C18:1 isomers. Amounts of 13C found in fatty acids showed that 95% of vaccenic acid was saturated to stearic acid after 5 h of incubation with the concentrate diet, against 78% with the forage diet. We conclude that most vaccenic acid is saturated to stearic acid, but some is isomerized to all cis and trans C18:1 isomers, with probably more isomerization in sheep fed a forage diet.  相似文献   

19.
This study examined trans monounsaturated fatty acid contents in all margarines and shortenings marketed in Denmark, and in frying fats used by the fast-food restaurants Burger King and McDonald’s. Trans C18:1 content was 4.1±3.8% (g per 100 g fatty acids) in hard margarines, significantly higher than the content in soft margarines of 0.4±0.8%. Shortenings had an even higher content of trans C18:1, 6.7±2.3%, than the hard margarines. Margarines and shortenings with high contents of long-chain fatty acids had about 20% total trans monoenoic of which close to 50% were made up of trans long-chain fatty acids. Both fast-food frying fats contained large amounts of trans C18:1, 21.9±2.9% in Burger King and 16.6±0.4% in McDonald’s. In Denmark the per capita supply of trans C18:1 from margarines and shortenings and frying fats has decreased steadily during recent years. The supply of trans C18:1 from margarines and shortenings in the Danish diet is now 1.1 g per day.  相似文献   

20.
This study examined trans monounsaturated fatty acid contents in all margarines and shortenings marketed in Denmark, and in frying fats used by the fast-food restaurants Burger King and McDonald’s. Trans C18:1 content was 4.1±3.8% (g per 100 g fatty acids) in hard margarines, significantly higher than the content in soft margarines of 0.4±0.8%. Shortenings had an even higher content of trans C18:1, 6.7±2.3%, than the hard margarines. Margarines and shortenings with high contents of long-chain fatty acids had about 20% total trans monoenoic of which close to 50% were made up of trans long-chain fatty acids. Both fast-food frying fats contained large amounts of trans C18:1, 21.9±2.9% in Burger King and 16.6±0.4% in McDonald’s. In Denmark the per capita supply of trans C18:1 from margarines and shortenings and frying fats has decreased steadily during recent years. The supply of trans C18:1 from margarines and shortenings in the Danish diet is now 1.1 g per day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号