首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Italian olive varieties (Caroleo, Leccino and Dritta) were processed by centrifugation in the oil mill. The olive paste was kneaded at 20, 25, 30 and 35 °C. The results achieved revealed that the oil content in green volatiles from lipoxygenase pathway (including C5 and C6 compounds and especially unsaturated C6 aldehydes) decreased progressively as the kneading temperature increased, dropping markedly at 35 °C. The content of phenols, o‐diphenols and secoiridoids showed an opposite trend, but the temperature of 35 °C was critical also for them, as it was for the majority of the other components, analytical parameters and indices related to quality, typicality and genuineness. In general, an increasing kneading temperatures increased the release of oil constituents from the vegetable tissue. This factor also affected the oil extraction yields. The best overall results were achieved by malaxing the olive paste at 30 °C. In fact, this temperature level led to achieving both pleasant green virgin olive oils and satisfactory oil extraction outputs.  相似文献   

2.
The effect of blanketing with CO2, naturally evolved during malaxation of olive pastes, on the quality of virgin olive oil was investigated at lab‐scale. The O2 depletion was monitored along with CO2 emission to confirm the previously hypothesized accelerated respiration. Malaxation experiments were conducted for 180 min both in sealed (SC) and in the traditional open‐to‐air conditions to ascertain whether the oil quality was affected by O2 concentration as afforded by CO2 blanketing. The quality of olive oils obtained at different time intervals was monitored by total acidity, peroxide value (PV), specific extinction coefficients K232 and K270, total chlorophyll and total hydrophilic phenols, and HPLC hydrophilic phenols profile. A rapid decrease in oxygen concentration and a simultaneous increase in CO2 concentration were recorded, confirming the accelerated respiration. The oil produced in SC showed a lower PV and K232 coefficient and a higher chlorophyll (10–17 mg/kg) and hydrophilic phenols (110 mg/kg) concentration. No differences in total acidity and K270 coefficient were observed. The hydrophilic phenols profile indicated that, at least for the Frantoio cultivar and an advanced ripeness state, the maximal extraction is generally achieved already after 20 min. Most of the individual hydrophilic phenols have higher concentrations (up to 50%) in SC.  相似文献   

3.
The relationships between FA and the volatile profiles of olive and walnut oils from Argentina were studied using GC and solid-phase microextraction coupled with GC-MS. The major volatiles were aldehydes and hydrocarbons, produced mainly through the oxidative pathways. n-Pentane, nonanal, and 2,4-decadienal were predominant in walnut oils, whereas nonanal, 2-decenal, and 2-undecenal were the most abundant components in olive oils. A multivariate analysis applied to the chemical data emphasized the differences between the oils and allowed us to see a pattern of covariation among the FA and the volatile compounds. The main differences between walnut and olive oils were the presence of larger amounts of short-chain (C5–C6) saturated hydrocarbons and aldehydes in the former and the greater quantities of medium-chain (C7–C11) compounds in olive oil. This can be explained by their different origins, mainly from the linoleic acid in walnut oil or almost exclusively from the oleic acid in olive oil.  相似文献   

4.
Fatty acids, volatiles, sterols, aliphatic and triterpenic alcohols of six monovarietal Tunisian virgin olive oils were analyzed. The results suggested that the compositional data concerning the above analytical fractions were effective in discriminating between varieties. The oils were found to contain high levels of oleic acid (up to 71.70% in the Oueslati variety). β‐Sitosterol (up to 85.46% in the Jdallou variety) and Δ5‐avenasterol (up to 30.97% in the El Hor variety) were the principal sterols in all samples; campesterol and stigmasterol were found at low levels. (E)‐2‐Hexenal was the main compound that characterizes the olive oil headspace of all samples. The other compounds identified were mainly C6 aliphatic components.  相似文献   

5.
The relationship between olive paste malaxation temperature and the concentration of olive oil hydrophilic phenols (HP), i.e. simple phenols, secoiridoids and lignans, was investigated. Malaxation experiments were performed at laboratory scale for 45 min at 21, 24, 27, 30, 33 and 36 °C. A significant (p <0.05) increment of total phenols concentration was found with a maximum at 27 °C, whereas for higher temperatures (30–36 °C) a progressive decrement was observed. A similar pattern was recorded approximately for all the secoiridoid compounds, i.e. a quasi‐linear increment of concentrations with increasing temperature until 30 °C, followed by a marked decrease in correspondence with the higher malaxation temperature (33 and 36 °C). The amount of simple phenols increased linearly with increasing temperature and no decrements were observed up to the maximal temperature investigated (36 °C), while no significant differences were found for lignans. A small increment of peroxide values and total chlorophyll was recorded as a function of the increasing malaxation temperature, whereas no differences were observed in the free acidity. The results highlight that there is not a univocal relationship between HP concentration and malaxation temperature. An equilibrium between degradation (chemical and biochemical oxidation and hydrolysis) and transfer (partitioning) phenomena was hypothesized.  相似文献   

6.
Phenolic compounds are of fundamental importance to the quality and nutritional properties of virgin olive oils. In this paper, the high-performance liquid chromatographic analysis of simple and complex olive oil phenols in the streams generated in the two-phase extraction system was carried out using Arbequina and Picual olives. The malaxation stage reduced the concentration of orthodiphenols in oil ca 50–70%, while the concentration of the nonorthodiphenols remained constant, particularly the recently identified lignans 1-acetoxypinoresinol and pinoresinol. Oxidation of orthodiphenols at laboratory scale was avoided by malaxing the paste under a nitrogen atmosphere. Phenolic compounds in the wash water used in the vertical centrifuge were also identified. Hydroxytyrosol, tyrosol, the dialdehydic form of elenolic acid linked to hydroxytyrosol were the most representative phenols in these waters. Hence, phenolic compounds in the wash waters came from both the aqueous and the lipid phases of the decanter oily must.  相似文献   

7.
Chemical structure of long-chain esters from “sansa” olive oil   总被引:1,自引:0,他引:1  
The major objective of this study was to determine the chemical structure of long-chain esters present in lower-grade olive oil. The classes of esters composing the hexanediethyl ether (99∶1) extract of the wax fraction from a pomace olive oil were: (i) esters of oleic acid with C1−C6 alcohols, (ii) esters of oleic acid with long-chain aliphatic alcohols in the range C22−C28 and (iii) benzyl alcohol esters of the very long-chain saturated fatty acids C26 and C28. The analysis and the structure assignments were carried out by gas chromatography coupled with mass spectrometry and by comparison with synthetic authentic model compounds. This work provided precise data on the chemical nature of the wax esters present in olive oil and should represent a means to detect adulteration of higher-grade olive oil with less expensive pomace olive oil and seed oils.  相似文献   

8.
Virgin olive oils from pilot-scale malaxation under hermetically sealed conditions were compared with olive oils from industrial conventional open-to-air malaxation (control). Under sealed conditions, large CO2 emissions coupled with O2 depletion occur. Oil samples produced under sealed conditions were less oxidized and contained greater concentrations of antioxidant compounds (especially secoiridoids phenols) than the control. These results were attributed to the reduced O2 concentration in the hermetically sealed pilot-scale malaxer. The amounts and types of volatile compounds present in the oil were only slightly affected by the treatment.  相似文献   

9.
The influence of the olive oil processing steps [paste malaxation (PM), decanter centrifugation (DC), and vertical centrifugation (VC)] on the dissolved oxygen (DO) concentration in virgin olive oil (VOO) right after production was investigated at industrial plant scale for two successive years. The influence of this parameter on quality decay during shelf life, assessed by peroxide value (PV) analysis, was also monitored. The VC step showed the higher oxygenation effect (50% increase in comparison to the control), and a good linear regression (r2 = 0.83) was found between the initial DO concentration and the PV after 2 days. An 18‐months shelf life test, performed on VOO sampled before and after the VC, indicated the slowest decay kinetics in the oils with the lower initial DO concentration, i.e. the non‐centrifuged oils.  相似文献   

10.
The purpose of this investigation was to study differences in the chlorophyll, carotenoid, and phenolic fractions of virgin olive oils from the Arbequina variety cultivated in different olive growing areas of Spain. Virgin olive oil from Lleida was less heavily pigmented, and these oils showed more negative values for the ordinate a* (of the CIELAB colorimetric system). Pheophytin a was the major chlorophyll pigment, and lutein was the major component of the carotenoid fraction in all oils analyzed. The chlorophyll a concentration in virgin olive oils from Lleida was 700 μg kg−1, but was 175 μg kg−1 in oils from Jaén, and 200 μg kg−1 in oils from Tarragona. Finally, the chlorophyll a/chlorophyll b ratio was 9 in oils from Lleida and around 0.6 in the other two Arbequina olive oils. In relation to the phenolic fraction, the hydroxytyrosol and tyrosol contents were significantly higher in olive oils from Jaén (grown at higher altitude and precipitation rates). The secoiridoid derivatives showed a significantly higher concentration in olive oils from Tarragona, probably due to the low altitude where they grow, and finally the ratio of (dialdehydic form of elenolic acid linked to tyrosol)/lignans had a value of 1.4 in olive oils from Lleida, whereas this value was around 0.7 in the other Arbequina olive oils.  相似文献   

11.
Effect of destoning and malaxation in nitrogen atmosphere on oxidative stability, fatty acid and sterol composition of extra virgin olive oil (EVOO) were investigated in industrial scale. Olives of ‘Edremit yaglik’ cultivar were processed with a two phase centrifugal system with or without stones, in nitrogen or air atmosphere. Results have shown that either N2 flush or destoning did not make any contribution to the sterol and fatty acid composition. Malaxation in nitrogen atmosphere extended induction time, raised phenolic, tocopherol contents and antioxidant potential of oils. Destoning also increased oxidative stability but lowered carotenoid and chlorophyll contents of oils. Among all treatments, the combined effect of destoning and malaxation in nitrogen atmosphere achieved the production of EVOO with the highest quality.  相似文献   

12.
Olive leaf‐olive oil preparations were obtained by vigorous mixing at various levels of addition (5, 10, 15%w/w) of new or mature leaves. After removal of the plant material via centrifugation, quality and sensory characteristics of the preparations were determined. Oxidative stability (120°C, 20 L/h) and DPPH radical scavenging were increased ~2–7 fold depending on the level of leaves used due to enrichment with polar phenols, mainly oleuropein, and a‐tocopherol. The extraction process affected the chlorophyll content and organoleptic traits as indicated by acceptability and preference tests (n = 50). Forty‐four % of the panelists identified a strong pungency in preparations with 15% w/w new leaves. Fifty‐four % of them identified a bitter taste in those with 15% w/w mature leaves, which was attributed to high levels of oleuropein (~200 mg/kg oil). Olive leaf‐olive oil preparations had interesting properties regarding antioxidants present that can attract the interest of a functional product market. Practical applications: The wider use of olive oil and derived products is highly desirable. In this sense, the current study presents data that support introduction to the market of a new specialty olive oil based solely on olive tree products (olive oil and leaves). Thus, in addition to olive oil and olive paste, a new product, that is an olive oil enriched with olive leaf antioxidants, especially oleuropein produced via a “green” technique (mechanical means instead of extraction with organic solvent) can be made available for consumers.  相似文献   

13.
The aim of this investigation was to determine the impact of fruit ripening on chemical and sensorial changes in monovarietal olive oils obtained from two important olive cultivars grown in Croatia, Bu?a and ?rna. In Bu?a oils peroxide value, K232 and K270 increased during ripening, while no differences among three ripening stages in ?rna oils were observed. Oils of both cultivars at the later ripening stages had higher free acidity level and lower sensory score followed by mild loss in almost all positive sensory characteristics. Total phenols and antioxidant capacity decreased in Bu?a oils during fruit ripening, while in ?rna oils reached maximum level in purple stage and then progressively decreased in the black ripening stage. Oleic acid level slightly increased during ripening in both cultivar oils. Linoleic acid decreased in Bu?a oils obtained from black fruits while palmitic acid decreased in ?rna oils during ripening. In both monovarietal oils chlorophyll and carotenoids concentrations decreased during ripening. The two cultivars had different course of total aldehydes, total esters and total ketones during ripening, while total alcohols were the highest in oils from purple ripening stage and then decreased as ripening progress. Practical applications: During the ripening, the chemical composition of olive fruit changes influencing the quality grade, oxidative stability, sensory characteristics and nutritional value of the obtained products. The cultivars characterized by a similar trend of ripening process could have different course of chemical and sensorial changes in oil during fruit ripening. Therefore, knowledge about these changes is important for determination of proper harvest time of single cultivar to achieve optimum of its potential regarding desirable characteristics of obtained oil.  相似文献   

14.
We performed a survey on the yield, quality, and chemical characteristics of virgin olive oils from two olive varieties in Croatian Istria: Frantoio and Ascolana tenera, on Cherry leafroll virus‐infected and virus‐noninfected trees and on two harvest dates. Free acidity, peroxide value, specific spectrophotometric absorptions at 232 and 270 nm, fatty acid composition, total phenols, o‐diphenols, oil color, and pigments were determined. Infected olives had lower oil yield and maturity index versus healthy ones. Oils from infected fruits had significant lower value of K232 and K270 and very elevated total phenols content compared to those obtained from healthy olives. Infected Frantoio gave a lower content of o‐diphenols than the healthy ones, which is in contrast to infected Ascolana that had higher values. The aim of this study is to determine the chemical changes in virgin olive oils from healthy and infected trees related to virus influence. According to our knowledge, this is the first survey on the possible influence of viruses on olive fruits, oil yield, and virgin olive oil quality. Practical applications : There are only few papers which analyze the influence of viruses on crops (especially influence on wine quality) and their effects on yield or other agronomic parameters. This work evaluates for the first time the impact of Cherry leafroll virus on the quality of virgin olive oil obtained from Frantoio and A. tenera varieties in terms of basic parameters related to the hydrolitic and oxidative status, content in antioxidant compounds, and in pigments as well as in fatty acid composition.  相似文献   

15.
Two samples of virgin olive oil and one sample of hexane-extracted husk oil coming from Iran were examined. The analyses included physical and chemical characteristics, the composition of total fatty acids and fatty acids at the glyceride 2-position by gas liquid chromatography (GLC) of methyl esters, the triglycerides composition calculation according to Vander Wal theory, the separation of the alcoholic fractions (sterols, 4-methylsterols, triterpene alcohols, triterpene dialcohols and aliphatic alcohols) of the unsaponifiable matter by thin layer chromatography (TLC), the quantitation and the composition of these fractions by GLC of TMS derivatives. The results were in line with data from literature for olive oils of different origin, with the exception of: a high content of unsaponifiable matter (1.75 and 1.95% for virgin oils, 5.33% for husk oil); a high amount of sterols for husk oil (562 mg/100 g oil); a low content of SE 30 apparent β-sitosterol for husk oil (91.1%); a low amount of triterpene dialcohols (1 mg/100 g oil) and triterpene alcohols (78 and 91 mg/100 g oil) for virgin oils; a content of cycloartenol (60.2–66.9%) higher than the 24-methylenecycloartanol one (22.8–26.6%; a content of C24 linear saturated alcohol (33.9–38.0%) slightly higher than the C26 alcohol one (29.3–32.8%).  相似文献   

16.
The extraction conditions of virgin olive oil have a great influence on its sensory quality. During the centrifugation process, temperature and time of malaxing can be altered to potentially affect quality. Malaxing times (15, 30, 45, 60, and 90 min) and temperatures (25 and 35°C) were studied in an experimental oil mill. Volatile compounds, produced through the lipoxygenase pathway (hexanal, Z-3-hexenal, E-2-hexenal, hexyl acetate, Z-3-hexenyl acetate, hexan-1-ol, E-3-hexen-1-ol, Z-3-hexen-1-ol, and E-2-hexen-1-ol), were analyzed by dynamic headspace gas chromatography, gas chromatographymass spectrometry, and gas chromatography-olfactometry. Different amounts of volatiles responsible for positive attributes of green aroma and negative attributes of astringent mouthfeel of virgin olive oil were determined. The results, after applying mathematical procedures, showed that a temperature of 25°C and a malaxing time between 30 and 45 min produced volatile compounds that contribute to the best sensory quality. High temperature (T≥35°C) with minimum values of time (t<30 min) could also be useful as an alternative way to obtain pleasant green virgin olive oils.  相似文献   

17.
In this study we have examined the effect of olive oil storage outdoors on a comprehensive series of quality measures. The conditions used were at the extreme of those encountered during the production of bottle oil. Filtered and unfiltered oils were compared as was the influence of inert gas (nitrogen) in the headspace. Increases in K232, K270 and peroxides over time were very much reduced by inert headspace gas, which also reduced losses of total phenols and oxidative stability. Headspace nitrogen also reduced the rise in unconjugated phenolics as secoiridoid derivatives declined and minimised losses in polyunsaturated fatty acids. The pattern of volatile compounds detected in olive oils stored indoors or outdoors showed subtle differences. Moreover, when stored with air exposure the levels of some negative sensory components such as penten‐3‐ol and hexanal increased while other positives, like trans‐2‐hexenal were reduced. These changes would be expected to reduce quality. Finally, Panel tests were used. All oils lost perceived quality on storage and this was accelerated outdoors while headspace nitrogen slowed the deterioration significantly. Our data show that storage outdoors for 4 months in winter does not reduce olive oil quality significantly and that an inert gas in the headspace is beneficial. Practical applications : The storage of olive oil for bottling is carried out under a variety of conditions. Here we assess the effects of storage outdoors for oils from the main Greek cultivar (Koroneiki) of olive. Detailed analyses of quality (standard measures, different phenolics, lipids and volatiles) as well as Panel tests were used for evaluation. Our data show that, although storage outdoors causes deterioration quicker than indoors, changes are not serious up to 4 months. Furthermore, the use of an inert headspace gas significantly preserved quality both indoors and outdoors. Thus we would strongly recommend the latter measure to producers.  相似文献   

18.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

19.
‘Olive paste’ is a preserved food gaining popularity as a gourmet product. Its quality depends on that of the major ingredients, table olives (green or black) and virgin olive oil, as well as on the changes occurring to the constituents of the latter during preparation and storage. In this view, our attention was focused on the characteristics of the lipid fraction (l.f.) of a great number of commercial products after a careful search in retail markets and the web. Ultraviolet absorbance values (K232, K270) of the l.f., a criterion set for edible and non‐edible olive oil oxidative status due to paste heat treatment during pasteurization, could not support the label information regarding the quality of the oil used. On the contrary, the content of α‐tocopherol (?250 mg/kg l.f. or ?50 mg/kg paste) was a strong indication of good‐quality major ingredients. Within each brand, consistency with labeling was checked through squalene (higher content in products containing higher amounts of olive oil) or β‐carotene determination (higher levels in preparations containing red pepper). For green olive paste samples, the values of the ratio pheophytin a/pyropheophytin a may be used to monitor the shelf life of the product. The findings support routine quality control of the new product.  相似文献   

20.
Research has been carried out to ascertai the effects of different processing systems on olive oil quality. Tests were performed in industrial oil mills that were equipped with both pressure and centrifugation systems. Results show that oils extracted from good-quality olives do not differ in free fatty acids, peroxide value, ultraviolet absorption and organoleptic properties. Polyphenols ando-diphenols contents and induction times are higher in oils obtained from good-quality olives by the pressure system because it does not require addition of water to the olive paste. The centrifugation system requires the addition of warm water to the olive paste and helps to obtain oils with a lower content of natural antioxidants. Oils obtained from poorquality or from ripe olives in continuous centrifugal plants are lower in free fatty acids than those obtained by the pressure system. Dr. Mario Solinas is deceased—May 23, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号