首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

2.
The thermal and mechanical properties of low‐density polyethylene (LDPE), poly(ε‐caprolactone) (PCL), and their blends were evaluated. Differential scanning calorimetry showed that increasing the PCL content of the blend did not change the LDPE melting temperature, but reduced the crystallinity by up to 16.8%. This behavior was related to interactions between the PCL chains and the crystalline phase of LDPE. Tensile strength and elongation at break values for the blends were lower than those for the pure polymers, which suggested an incompatibility between the polymers. The values for Young's modulus under tensile increased when PCL was added to LDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3909–3914, 2004  相似文献   

3.
The influence of wax content on the thermal, mechanical and viscoelastic properties of low‐density polyethylene (LDPE)–oxidized wax miscible blends have been investigated. It was found that small concentrations of wax improved physical properties such as thermal stability, elastic modulus and yield stress. At higher concentrations, however, due to crystal phase separation, wax deteriorates the thermal as well as the mechanical properties. It was also shown that a formerly established two‐process model for the stress relaxation in semicrystalline polymers could be used for the explanation of the viscoelastic behaviour of the blends. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
The co‐crosslinked products and the entrapping phenomenon that may exist in a poly(vinyl chloride)/low density polyethylene/dicumyl peroxide (PVC/LDPE/DCP) blend were investigated. The results of selective extraction show that unextracted PVC was due to not being co‐crosslinked with LDPE but being entrapped by the networks formed by the LDPE phase. SBR, as a solid‐phase dispersant, can promote the perfection of networks of the LDPE phase when it is added to the PVC/LDPE blends together with DCP, which leads to more PVC unextracted and improvement of the mechanical properties of PVC/LDPE blends. Meanwhile, the improvement of the tensile properties is dependent mainly on the properties of the LDPE networks. Finally, the mechanism of phase dispersion–crosslinking synergism is presented. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1296–1303, 2003  相似文献   

5.
Vulcanizates of blends of ethylene–propylene–diene rubber and polyamide copolymers were prepared by reactive compatibilization. A reactive route was employed for compatibilizing these blends with the addition of chlorinated polyethylene (CPE). The influence of the compatibilizers, crosslinking agents, blend compositions, and addition modes of the compatibilizers on the mechanical properties of the blends was investigated. The morphologies of the blends were determined with scanning electron microscopy. The addition of CPE was found to reduce the particle size of the dispersed phase remarkably. The stability of the blends with compatibilizers was measured by high‐temperature thermal aging. The mechanical properties were examined by stress–strain measurements and dynamic mechanical thermal measurements; the addition of polyamide copolymers caused significant improvements in the tensile properties of these blends.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1727–1736, 2003  相似文献   

6.
This article reports on the morphology, melting and crystallization behavior, thermal stability, tensile properties, and thermal conductivity of phase‐change materials (PCM) for thermal energy storage. These materials were based on a soft Fischer‐Tropsch paraffin wax (PCM) blended with low‐density polyethylene, linear low‐density polyethylene, and high‐density polyethylene. These immiscible blends were melt‐mixed with copper (Cu) microparticles (up to 15 vol %) to improve the thermal conductivity in the matrix material. The presence of the Cu microparticles in the PCMs did not significantly change the crystallization behavior, thermal stability, or tensile properties of the blend composites in comparison with the corresponding polyethylene/wax blends and polyethylene/Cu composites. The observed differences were related to the fact that the wax seemed to have a higher affinity for the Cu particles than any of the polyethylenes, and so it crystallized as a layer around the Cu particles. The thermal conductivity of the samples increased almost linearly with increasing Cu content, but the samples had slightly lower values than the corresponding polyethylene/Cu composites, probably because of the lower thermal conductivity of the wax. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The influence of adding low density polyethylene (LDPE) and high density polyethylene (HDPE) to different ratios of styrene butadiene copolymer (SBR) and acrylonitrile butadiene copolymer (NBR) rubber blend has been studied. The experimental methods performed are based on measurements of rheological, mechanical, elastic properties, phase morphology, density, ultrasonic studies, thermal stability and differential scanning calorimetry (DSC). Results showed that rheological and mechanical properties of the blend are improved, especially at SBR/NBR blend (50/50), when incorporated with LDPE. Results indicated also a clear stability of the cure rate index (CRI) of the blend. Morphological structure analysis obtained from scanning electron microscope (SEM) showed a reduced domain size for blends containing LDPE. Ultrasonic and density investigations revealed the efficiency of adding LDPE in improving the compatibility behavior of this blend. Results also showed an improvement in elastic properties and thermal stability by adding LDPE. DSC scans of the blends filled with LDPE showed high shift in the glass transition temperature which can be attributed to the increased strength at the interface.  相似文献   

8.
The thermal stability of vulcanizates of low‐density polyethylene (LDPE), poly(dimethyl siloxane) (PDMS) rubber, and their blends was studied by nonisothermal thermogravimetry. Four ethylene copolymers [ethylene methyl acrylate (EMA), ethylene vinyl acetate, ethylene acrylic acid, and a zinc‐salt‐based ionomer (Lotek 4200)] were used as compatibilizers for the blend systems. The thermograms and derivatograms of the blends showed that thermal degradation took place in two stages, whereas those for the base polymers showed single‐stage degradation. Kinetic studies of the blends and pure components showed that the degradation followed first‐order reaction kinetics. The activation energy at 10% degradation was determined with the Freeman–Carroll method and was at a maximum (42.34 kcal/mol) for the 25:75 LDPE/PDMS rubber blend. The half‐life at 200°C was evaluated by the Flynn–Wall method and was at a maximum (812.5 days) for the same blend. Out of four compatibilizers, EMA showed the maximum activation energy (34.25 kcal/mol) for degradation and a maximum half‐life (695.3 days), indicating that EMA was the best compatibilizer for the blend system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 635–642, 2003  相似文献   

9.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

10.
This article investigates the mechanical, morphological, and thermal properties of poly(vinyl chloride) (PVC) and low‐density polyethylene (LDPE) blends, at three different concentrations: 20, 50, and 80 wt% of LDPE. Besides, composite samples that were prepared from PVC/LDPE blend reinforced with different date palm leaf fiber (DPLF) content, 10, 20, and 30 wt%, were also studied. The sample in which PVC/LDPE (20 wt%/80 wt%) had the greatest tensile strength, elongation at break, and modulus. The good thermal stability of this sample can be seen that T10% and T20% occurred at higher temperatures compared to others blends. DPLF slightly improved the tensile strength of the polymer blend matrix at 10 wt% (C10). The modulus of the composites increased significantly with increasing filler content. Ageing conditions at 80°C for 168 h slightly improved the mechanical properties of composites. Scanning electron microscopic micrographs showed that morphological properties of tensile fracture surface are in accordance with the tensile properties of these blends and composites. Thermogravimetric analysis and derivative thermogravimetry show that the thermal degradation of PVC/LDPE (20 wt%/80 wt%) blend and PVC/LDPE/DPLF (10 and 30 wt%) composites took place in two steps: in the first step, the blend was more stable than the composites. In the second step, the composites showed a slightly better stability than the PVC/LDPE (20 wt%/80 wt%) blend. Based on the above investigation, these new green composites (PVC/LDPE/DPLF) can be used in several applications. J. VINYL ADDIT. TECHNOL., 25:E88–E93, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
The effect of maleic anhydride‐grafted hard paraffin wax (MA‐g‐wax) and oxidized hard paraffin wax (OxWax), as possible compatibilizers, on the morphology, thermal and mechanical properties of LDPE/sisal fiber composites were examined. The differential scanning calorimetry (DSC) results show that sisal alone did not change the crystallization behavior of LDPE, while the two waxes influenced the crystallization behavior of LDPE in different ways, whether mixed with LDPE alone or in the presence of sisal. The thermal properties seem to be influenced by the fact that the waxes preferably crystallize around the short sisal fibers, and by the fact that the two waxes have different compatibilities with LDPE. The TGA results show an increase in the thermal stability of the blends in the presence of the two waxes, with LDPE/OxWax showing a more significant improvement. The presence of wax, however, reduced the thermal stability of the LDPE/sisal/wax composites. The presence of OxWax and MA‐g‐wax similarly influenced the tensile properties of the composites. Both waxes similarly improved the modulus of the compatibilized composites, but in both cases the tensile strengths were worse, probably because of a fairly weak interaction between LDPE and the respective waxes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low‐density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene‐co‐glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC‐LDPE blends. However CYC‐LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 219–237, 2006  相似文献   

13.
In this study, the mechanical and thermal properties of low‐density polyethylene (LDPE)/thermoplastic tapioca starch blends were determined with LDPE‐g‐dibutyl maleate as the compatibilizer. Mechanical testing for the evaluation of the impact strength and tensile properties was carried our as per standard ASTM methods. Thermogravimetric analysis and differential scanning calorimetry were also used to assess the thermal degradation of the blends. Scanning electron micrographs were used to analyze fracture and blend morphologies. The results show significant improvement in the mechanical properties due to the addition of the compatibilizer, which effectively linked the two immiscible blend components. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1109–1120, 2006  相似文献   

14.
Nylon 12 was successfully synthesized in a twin‐screw extruder via the anionic ring‐opening polymerization of lauryllactam (LL). Maleated low‐density polyethylene (LDPE–MAH) was added to improve the mechanical properties of nylon 12. The in situ blends of nylon 12 and LDPE–MAH were characterized by mechanical testing and scanning electron microscopy. With increasing LDPE–MAH content, the tensile strength and flexural strength decreased, whereas the blend had improved impact strength and achieved supertoughness when the content of LDPE–MAH was 30 wt %. In the in situ formed low‐density polyethylene‐g‐PA12 copolymer, the domain of the LDPE–MAH phase was finely dispersed in the nylon 12 matrix. The good interface between the two phases demonstrated that LDPE–MAH could be used as a macromolecular activator to induce the polymerization of LL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In the present study, starch octanoates OCST1.8 and OCST2.7 with degrees of substitution (d.s.) of 1.8 and 2.7, respectively, and dodecanoate DODST2.7 (d.s. = 2.7), were prepared by esterification of native starch with fatty acid chlorides. Our analyses, including elemental analysis, FTIR, contact angle, DSC, and TGA measurements confirmed the esterification reaction of starch and the degree of substitution. The ester group was found to act like an internal plasticizer, with an increase in the number and the size of fatty acyl chains grafted onto starch. These starch esters were mixed with low density polyethylene (LDPE) at various proportions in a Haake Rheomixer. Water and moisture absorption, thermal and mechanical properties, and biodegradation were investigated as a function of blend composition. The DODST2.7/LDPE blends showed, in general, better thermal stability and higher elongation, but lower tensile strength and water absorption, than did corresponding OCST/LDPE blends. The addition of starch esters to LDPE led to a very slow rate of biodegradation of these blends. © 1997 John Wiley & Sons, Inc. J Appl Polym 65: 705–721, 1997  相似文献   

16.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

17.
The influence of paraffin‐wax type and content on the properties of its blends with HDPE, LDPE, and LLDPE was investigated. Melt‐mixing of HDPE with wax gave rise to completely miscible blends for both 10 and 20% wax contents. A wax content of 30% gave rise to a partially miscible blend. These observations were supported by the thermal fractionation (stepwise cooling) results. Melt‐mixing of LDPE with hard paraffin wax gave rise to a partially miscible blend for all wax contents investigated, while complete miscibility was observed for the 10% oxidized hard paraffin wax containing blend. Complete miscibility was observed for all the LLDPE/A1 wax blends, with A1 wax as an oxidized hard paraffin wax. This indicates possible cocrystallization of this wax with LLDPE, which was also evident from the thermal fractionation curves. LLDPE blends with hard paraffin wax were, however, partially miscible for all wax contents. All the observations were supported by the surface free energy results. It is further clear from the thermal fractionation results that the presence of wax changed the crystallization behavior of LDPE and LLDPE. Changes in the tensile properties are explained in terms of the miscibility and proposed morphologies of the blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2225–2236, 2007  相似文献   

18.
Nanofibrous morphology has been observed in ternary blends of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) when these were melt‐extruded via slit die followed by hot stretching. The morphology was dependent on the concentration of the component polymers in ternary blend LDPE/LLDPE/PP. The films were characterized by wide angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), and testing of mechanical properties. The XRD patterns reveal that the β phase of PP is obtained in the as‐stretched nanofibrillar composites, whose concentration decreases with the increase of LLDPE concentration. The presence of PP nanofibrils shows significant nucleation ability for crystallization of LDPE/LLDPE blend. The SEM observations of etched samples show an isotropic blend of LDPE and LLDPE reinforced with more or less randomly distributed and well‐defined nanofibrils of PP, which were generated in situ. The tensile modulus and strength of LDPE/LLDPE/PP blends were significantly enhanced in the machine direction than in the transverse direction with increasing LLDPE concentration. The ultimate elongation increased with increasing LLDPE concentration, and there was a critical LLDPE concentration above which it increased considerably. There was a dramatic increase in the falling dart impact strength for films obtained by blow extrusion of these blends. These impressive mechanical properties of extruded samples can be explained on the basis of the formation of PP nanofibrils with high aspect ratio (at least 10), which imparted reinforcement to the LDPE/LLDPE blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The effect of poly(dianilinephosphazene) (PDAP) on the processability, thermal behavior, crystallinity, morphology, mechanical properties, and flammability behavior of low‐density polyethylene (LDPE) was studied. Plasticorder traces of PDAP/LDPE blends implied good processability and miscibility. Thermogravimetric analysis showed that PDAP improved the thermal stability of LDPE. X‐ray diffraction results indicated that PDAP was a semicrystalline polymer, and the crystallinity of the blends decreased with increasing PDAP content. A new reflection at 2θ = 23.15° was found in wide‐angle X‐ray diffraction spectra of the blends, indicating that these two components interacted with one another. The scanning electron microscopy microstructures of the blends also supported these findings. Moreover, PDAP substantially enhanced the limited oxygen index and elongation at break of LDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 709–714, 2002  相似文献   

20.
Melt rheology and mechanical properties in linear low density polyethylene (LLDPE)/low density polyethylene (LDPE), LLDPE/high density polyethylene (HDPE), and HDPE/LDPE blends were investigated. All three blends were miscible in the melt, but the LLDPE/LDPE and HDPE/LDPE blends exibiled two crystallization and melting temperatures, indicating that those blends phase separated upon cooling from the melt. The melt strength of the blends increased with increasing molecular weight of the LDPE that was used. The mechanical properties of the LLDPE/LDPE blend were higher than claculated from a simple rule of mixtures, whiele those of the LLDPE/HDPE blend conformed to the rule of mixtures, but the properties of HDPE/LDPE were less than the rule of mixtures prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号