首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of a medium molecular weight polyethylene (MMW‐PE) and an ultrahigh molecular weight PE (UHMW‐PE) binary mixture with different weight fractions crystallized from the melt at 0.1 and 450 MPa were studied. The tensile modulus, yield stress, and strain were obtained as a function of the weight fractions in the PE mixtures at 25 and 85°C. The tensile modulus in the sample crystallized at 0.1 MPa decreased from 1.5 GPa of pure MMW‐PE to about 0.4 GPa of pure UHMW‐PE with the UHMW‐PE content but it did not decrease with the UHMW‐PE in the sample crystallized at 450 MPa in testing at 25°C. A decreasing rate of the storage modulus E′ of UHMW‐PE in a dynamic measurement for the sample crystallized at 0.1 MPa with the temperature is larger than that of the sample crystallized at 450 MPa. These experimental facts are interpreted in relation to the molecular motion and crystallinity of the sample. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1962–1968, 2003  相似文献   

2.
Six film samples of varying compositions of linear low‐density polyethylene (LLDPE), 10–35 wt %, and high‐density polyethylene (HDPE), 40–65 wt %, having a fixed percentage of low‐density polyethylene (LDPE) at 25 wt % were extruded by melt blending in a single‐screw extruder (L/D ratio = 20 : 1) of uniform thickness of 2 mil. The tensile strength, elongation at break, and impact strength were found to increase up to 60 wt % HDPE addition, starting from 40 wt % HDPE, in the blends and then decreased. The blend sample B‐500 was found to be more thermally stable than its counterparts. The appearance of a single peak beyond 45 wt % HDPE content in the blend in dynamic DSC scans showed the formation of miscible blend systems and this was further confirmed by scanning electron microscopic analysis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1691–1698, 2005  相似文献   

3.
The thermal properties of high‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) filled with different biodegradable additives (Mater‐Bi AF05H, Cornplast, and Bioefect 72000) were investigated with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The DSC traces of the additives indicated that they did not undergo any significant phase change or transition in the temperature region typically encountered by a commercial composting system. The TGA results showed that the presence of the additive led to a thermally less stable matrix and higher residue percentages. The products obtained during the thermodegradation of these degradable polyolefins were similar to those from pure polyethylenes. The LDPE blends were thermally less stable than the HDPE blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 764–772, 2002  相似文献   

4.
The compatibility of low‐density polyethylene and poly(ethylene‐co‐vinyl acetate) containing 18 wt % vinyl acetate units (EVA‐18) was studied. For this purpose, a series of different blends containing 25, 50, or 75 wt % EVA‐18 were prepared by melt mixing with a single‐screw extruder. For each composition, three different sets of blends were prepared, which corresponded to the three different temperatures used in the metering section and the die of the extruder (140, 160, and 180°C), at a screw rotation speed of 42 rpm. Blends that contained 25 wt % EVA‐18 were also prepared through mixing at 140, 160, or 180°C but at a screw speed of 69 rpm. A study of the blends by differential scanning calorimetry showed that all the prepared blends were heterogeneous, except that containing 75 wt % EVA‐18 and prepared at 180°C. However, because of the high interfacial adhesion, a fine dispersion of the minor component in the polymer matrix was observed for all the studied blends with scanning electron microscopy. The tensile strengths and elongations at break of the blends lay between the corresponding values of the two polymers. The absence of any minimum in the mechanical properties was strong evidence that the two polymers were compatible over the whole range of composition. The thermal shrinkage of the blends at various temperatures depended mainly on the temperature and EVA‐18 content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 841–852, 2003  相似文献   

5.
In this study, the effects of the monotherpenic phenol concentration on the properties of biocomposites containing plasticized poly(lactic acid) (PLA) with acetyl tributyl citrate (ATBC) were investigated. The monotherpenic phenols carvacrol (C) and thymol (T) were added to PLA by a melt‐blending method. The prepared samples were characterized by means of tensile testing, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy (SEM), and antibacterial activity tests. The addition of ATBC to PLA resulted in hydrogen bonding between ATBC and PLA. We observed that ATBC, C, and T reduced the glass‐transition temperature of PLA. The presence of C and T decreased the maximum degradation temperature slightly. Because of the plasticization effect of the additives, the tensile strength and Young's modulus of PLA decreased, whereas the extent of elongation they experienced before failure increased. This effect was also observed with SEM analysis in terms of plastic deformation at break. The antibacterial activity tests showed that samples containing high concentrations of C demonstrated an improved antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes bacteria. We observed that C exhibited a higher inhibition against bacterial strains than T. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45895.  相似文献   

6.
This article reports on the morphology, melting and crystallization behavior, thermal stability, tensile properties, and thermal conductivity of phase‐change materials (PCM) for thermal energy storage. These materials were based on a soft Fischer‐Tropsch paraffin wax (PCM) blended with low‐density polyethylene, linear low‐density polyethylene, and high‐density polyethylene. These immiscible blends were melt‐mixed with copper (Cu) microparticles (up to 15 vol %) to improve the thermal conductivity in the matrix material. The presence of the Cu microparticles in the PCMs did not significantly change the crystallization behavior, thermal stability, or tensile properties of the blend composites in comparison with the corresponding polyethylene/wax blends and polyethylene/Cu composites. The observed differences were related to the fact that the wax seemed to have a higher affinity for the Cu particles than any of the polyethylenes, and so it crystallized as a layer around the Cu particles. The thermal conductivity of the samples increased almost linearly with increasing Cu content, but the samples had slightly lower values than the corresponding polyethylene/Cu composites, probably because of the lower thermal conductivity of the wax. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The thermal properties and mechanical properties are the key factors of phase‐change microcapsules (microPCMs) in energy‐storage applications. In this study, microPCMs based on an n‐octadecane (C18) core and a melamine–urea–formaldehyde (MUF) shell supplemented with O2‐plasma‐modified multiwalled carbon nanotubes (CNTs) were synthesized through in situ polymerization. Meanwhile, two different addition methods, the addition of modified CNTs into the emulsion system or into the polymer system, were compared and examined. Scanning electron microscopy micrographs showed that the microPCMs were spherical and had a broadened size distribution. Fourier transform infrared testing demonstrated that the modified CNTs did not affect C18 coated by MUF resin. The results indicate that the thermal conductivity and mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of modified CNTs, but the heat enthalpy and encapsulated efficiency decreased slightly. Moreover, the thermal conductivity and mechanical properties of microPCMs modified with CNTs directly added to the polymer system were superior to those with CNTs added to emulsion system. In particular, when 0.2 g of modified CNTs were added to the polymer system, the thermal conductivity of the microPCMs was improved by 225%, and the breakage rates of the microPCMs at 4000 rpm for 5, 10, and 20 min decreased by 74, 72, and 60%, respectively, compared with that of the microPCMs without modified CNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45269.  相似文献   

8.
Fillers are utilized for different purposes. In plastic industry, fillers are mainly used to extend the bulk of the compound; however, they can also improve physical properties, materials processing, and reduce cycle time of plastics. In this article, high-density polyethylene was filled with untreated and 5% alkaline-treated salago fiber, and thereafter the thermal and nondestructive properties of the composites were investigated. It was found that the chemical treatment of fiber increased the thermal stability and the mean coefficient value of linear thermal expansion of the treated composites as compared to the untreated ones. Moreover, the increase of fiber content in composites increased the crystallinity level while decreased the thermal capacity and melting temperature of the composites. The zinc, calcium, and phosphorus contents were found to be within the industry-acceptable range for elemental contents in polyolefins. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47873.  相似文献   

9.
This article describes an industrially viable melt blending approach for the preparation of high‐density polyethylene (HDPE)/fly ash composites having high loading of fly ash (FA) (up to 25 wt %). In this approach, solvent was used to enhance the mixing of FA in HDPE matrix. FA coated on the outer surface of HDPE granules using solvent is an economical technique for the incorporation of high loading of FA using conventional twin screw extruder. Herein, the effect of HDPE reinforced with FA on thermal, rheological, and mechanical properties has been investigated. Incorporation of FA in HDPE matrix resulted in higher storage modulus (E′), loss modulus (E″), and complex viscosity (η*) as compared to neat polymer. Tensile and flexural moduli were also found to increase (~47% and ~66%, respectively) with the addition of FA (25 wt %). However, the elongation at break of HDPE reduced as the rigid spherical FA particles do not undergo elongation. The dispersion of FA within the polymer matrix and interaction of FA with HDPE were investigated using scanning electron microscopy. Rheological and mechanical properties of the composites were also correlated with the morphology. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45995.  相似文献   

10.
This paper presents the effects of the filler type and testing temperature on the charge dynamics and thermal properties of the epoxy resin. The micro-nano hybrid composites with different content of the micro and nano aluminum nitride (AlN) fillers are fabricated. The morphology of micro-nano hybrid composites is characterized. Electrical testing and thermal analysis methods are adopted to analyze its electrical and thermal performance. The results show that the space charge accumulation is suppressed and the charge decay process is facilitated in the hybrid composites. The electrical performances of the hybrid composites are enhanced by the nano-fillers. The apparent mobility and activation energy are decreased with nano-AlN fillers in the composites at the high temperature. The glass transition temperature and thermal stability of the materials is improved with the nano-AlN. A hypothetical mechanism is proposed to explain the charge carrier injection and transport of the composites at different temperatures.  相似文献   

11.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

12.
To further improve the processability of water plasticized poly(vinyl alcohol) (PVA), boric acid (BA), which can rapidly form reversible crosslinked structure with the hydroxyl groups of PVA, was adopted as a modifier, and the water states, thermal performance, and rheological properties of modified PVA were investigated. The results showed that ascribing to the formation of the crosslinked structure between PVA and BA, the content of nonfreezing water in system increased, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remained in system to play the role of plasticizer. Meanwhile, this crosslinked structure shielded part hydroxyl groups in PVA chains, leading to the further weakening of the self‐hydrogen bonding of PVA, and guaranteeing a lower melting point and higher decomposition temperature, thus obtaining a quite wide thermal processing window, i.e., ≥179°C. The melt viscosity of BA modified PVA slightly increased, but still satisfied the requirements for thermal processing, thus reinforcing the flow stability of the melt at high shearing rate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43246.  相似文献   

13.
To improve the properties of gelatin, oxidized starch (OS) with different carbonyl content was introduced into the gelatin. In this study, we researched the influence of the carbonyl content of OS on the rheological characteristics, swelling behavior, thermal properties, and wettability of the modified gelatin film (MGF). The MGF samples were prepared by the casting of a 10% w/w solution of gelatin and OS with 18.9, 38.7, and 49.3% carbonyl content, respectively. The results of the dynamic viscosity demonstrated that the influence of the temperature on the rheological characteristics of native gelatin film (NGF) was more obvious than that of MGF. Meanwhile, the viscosity of the samples decreased with increasing carbonyl content in OS. Both the differential scanning calorimetry and thermogravimetry curves indicated that the denaturation and pyrogenic decomposition temperatures of the MGF samples were higher than those of NGF; this meant that the crosslinking between NGF and OS improved the physicochemical properties of gelatin. Compared with the NGF sample, MGF was less hydrophilic because the hydrophilic groups of gelatin could be shielded by OS. Meanwhile, the acid–base and salt sensitivity of the MGF samples were very obvious; therefore, the MGF samples could potentially be used as biomedical materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3809–3815, 2013  相似文献   

14.
The stabilizing effect of a natural filler, sulfur‐free lignin, on the thermal degradation of natural rubber (NR) was examined. Lignin was incorporated into NR in amounts of 10–30 phr (parts per hundred parts of rubber). It was shown that the lignin preparation used improved the physicomechanical properties of the rubber vulcanizates. Thermogravimetric analysis and differential scanning calorimetry were used to study the thermal degradation of unfilled and lignin‐filled vulcanized natural rubber. Measurements were carried out under atmospheric conditions. It was revealed that lignin used as filler increased the resistance of NR vulcanizates to thermooxidative degradation in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1226–1231, 2007  相似文献   

15.
The easy, low‐cost modification of the polarity of low‐density polyethylene (LDPE) and high‐density polyethylene (HDPE) through blending with oxidized Fischer–Tropsch wax was investigated. A 10 wt % concentration of the wax increased the polar component of the total surface free energy 10 times for LDPE and 4.5 times for HDPE. Modified LDPE also had significantly higher adhesion to the polar substrate, which was represented by a crosslinked epoxy‐based resin. This behavior was not observed for HDPE. The conservation of the good mechanical properties of polyethylene was observed. The wax content had only a moderate influence on the mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1164–1168, 2005  相似文献   

16.
A modified clay was used to prepare poly(L ‐lactic acid)/clay nanocomposite dispersions. X‐ray diffraction and transmission electron microscopy experiments revealed that poly(L ‐lactic acid) was able to intercalate the clay galleries. IR spectra of the poly(L ‐lactic acid)/clay nanocomposites showed the presence of interactions between the exfoliated clay platelets and the poly(L ‐lactic acid). Thermogravimetric analysis and differential scanning calorimetry were performed to study the thermal behavior of the prepared composites. The properties of the poly(L ‐lactic acid)/clay nanocomposites were also examined as functions of the organoclay content. The exfoliated organoclay layers acted as nucleating agents, and as the organoclay content increased, the crystallization temperature increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
The purpose of this research was to evaluate the effects of the fabrication method, poly(ethylene glycol) (PEG) molecular weight, and PEG concentration on the mechanical and thermal properties of blended poly (lactide‐co‐glycolide) (PLGA)/PEG scaffolds. The manufacturing process was the dominant factor. The tested fabrication processes were compression, heat molding, and solvent casting/vacuum drying. The scaffolds produced by compression were strong and brittle with mechanical properties [compressive modulus (E) ~ 400 N/mm2] comparable to those of trabecular bone. The heat‐molded scaffolds were weaker and more ductile (E ~ 45 N/mm2) than the compressed scaffolds, so they were more applicable to non‐load‐bearing applications. The vacuum‐dried scaffolds completely lacked compressive strength (E ~ 5 N/mm2) and were considered unsuitable for scaffolding applications. The miscibilities of the blends were also affected by the processing method and were evaluated on the basis of the melting‐point depression of crystalline PEG. The miscibility of PLGA in PEG was greatest with vacuum drying (6–13%), followed by heat molding (0.4–1.5%) and then compression (0.2–0.8%). The application of heat and solvent to the blend successfully altered the miscibility of the two polymers. Overall, this study demonstrates the ability to fabricate scaffolds with distinct thermal and mechanical characteristics by the manipulation of the fabrication method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 944–949, 2007  相似文献   

18.
To determine the thermal characteristics of linear and crosslinked polyimides (PIs), BTDA, ODPA, and 6FDA were used to synthesize polyimides. Thermal degradation temperature and glass transition temperature of the resulting PIs were measured using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). To measure the change in modulus and coefficient of thermal expansion (CTE) depending on dianhydride structure, a dynamic mechanical analyzer (DMA) and thermo‐mechanical analyzer (TMA) were used. The thermal degradation and glass transition temperature properties of linear PIs varied according to whether the linear chain adopted a bulky or flexible structure. Dynamic modulus and thermal expansion values of linear polyimides also showed good agreement with the TGA and DSC results. As we expected, linear polyimide with bulky 6FDA groups showed better thermal behavior than the flexible polyimides. Crosslinked polyimide nadic end‐capped (norbornene) with a bulky dianhydride group had a lower thermal degradation temperature and higher CTE than flexible BTDA and ODPA polyimides. Our results indicate that the mobility of the dianhydride group affects the thermal behaviors of linear and crosslinked polyimides in different ways. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41412.  相似文献   

19.
When making nanocomposites, there is a big challenge to obtain both functional and mechanical enhancement. In this study, a new in situ polymerization methodology for the incorporation of surface modified silver nanoparticles (AgNPs) in a thermoplastic polyurethane matrix was developed. AgNPs with contents ranging from 0 to 1.5 wt % were used. A double functionalization of the nanoparticles with oleic acid was performed, which lead to a reaction of carboxylic acid groups in the nanoparticle's surface with isocyanate groups of the 4,4′‐methylene diphenyl diisocyanate monomer as corroborated from the Raman results. The successful incorporation of the nanoparticles was verified with EDS, TGA, and Raman measurements. Thermal properties of nanocomposites were investigated by DSC. AgNPs made positive impact in two ways: first, increased more than twice the elastic modulus, as studied via nanoindentation measurements and second, based on the inhibition zone method, great bactericidal effectiveness for nanocomposites containing 1.5 wt % AgNPs was observed for Escherichia coli. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46180.  相似文献   

20.
The hydrolytic depolymerization of polyethylene terephthalate (PET) with alkaline hydroxides was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The reactions of the mixtures were conducted in their solid states under nitrogen atmosphere. The experimental results showed that potassium hydroxide possessed the hydrolytic activity of depolymerizing PET into small molecules such as ethylene glycol; in contrast, sodium hydroxide did not. The production rate of ethylene glycol was enhanced by increasing charge ratio of potassium hydroxide to PET. The presence of water facilitated the alkaline hydrolysis of PET; however, the presence of metal acetates decreased the hydrolysis rate. The activation energy for alkaline hydrolysis of PET determined by the thermograms was in good agreement with the value obtained from the experiments in a batch reactor. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1939–1945, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号