首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The world tendency toward using recycled materials demands new products from vegetable resources and waste polymers. In this work, composites made from powdered tire rubber (average particle size: 320 μm) and sisal fiber were prepared by hot‐press molding and investigated by means of dynamic mechanical thermal analysis and tensile properties. The effects of fiber length and content, chemical treatments, and temperature on dynamic mechanical and tensile properties of such composites were studied. The results showed that mercerization/acetylation treatment of the fibers improves composite performance. Under the conditions investigated the optimum fiber length obtained for the tire rubber matrix was 10 mm. Storage and loss moduli both increased with increasing fiber content. The results of this study are encouraging, demonstrating that the use of tire rubber and sisal fiber in composites offers promising potential for nonstructural applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 670–677, 2004  相似文献   

2.
In this article, modification of mercerized flax (MFx) through graft co-polymerization with methylmethacrylate (MMA) using ferrous ammonium sulphate–potassium per sulphate (FAS–KPS) redox initiator has been reported. Water uptake and moisture absorbance properties of methylmethacrylate grafted mercerized flax (MFx-g-MMA) and mechanical behavior of raw flax, mercerized flax, and MFx-g-MMA fibers reinforced—polystyrene matrix–based composites also have been evaluated. Four reaction parameters, reaction temperature, reaction time, initiator molar ratio, and monomer concentration, have been optimized to get maximum graft yield. Maximum graft yield of 138.35% has been obtained at optimum reaction conditions. The graft co-polymers thus formed were characterized by FTIR, TGA, and SEM techniques. Mercerized flax fiber reinforced showed better results than raw flax and MFx-g-MMA fibers reinforced composites.  相似文献   

3.
Composites made from ground tire rubber (GTR) and waste fiber produced in tire reclamation were prepared by mechanical milling. The effects of the fiber content, pan milling, and fiber orientation on the mechanical properties of the composites were investigated. The results showed that the stress‐induced mechanochemical devulcanization of waste rubber and the reinforcement of devulcanized waste rubber with waste‐tire fibers could be achieved through comilling. For a comilled system, the tensile strength and elongation at break of revulcanized GTR/fiber composites reached maximum values of 9.6 MPa and 215.9%, respectively, with 5 wt % fiber. Compared with those of a composite prepared in a conventional mixing manner, the mechanical properties were greatly improved by comilling. Oxygen‐containing groups on the surface of GTR particles, which were produced during pan milling, increased interfacial interactions between GTR and waste fibers. The fiber‐filled composites showed anisotropy in the stress–strain properties because of preferential orientation of the short fibers along the roll‐milling direction (longitudinal), and the adhesion between the fiber and rubber matrix was improved by the comilling of the fiber with waste rubber. The proposed process provides an economical and ecologically sound method for tire‐rubber recycling. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4087–4094, 2007  相似文献   

4.
Mercerization and acetylation treatments were applied to sisal fibers to enhance adhesion with polymer matrices in composites. The structures of the untreated and treated fibers were assessed with scanning electron microscopy. The waste from sisal‐fiber decortication consisted of mechanical, ribbon, and xylem fibers, and their ultimate cells varied considerably in size and shape. After mercerization and acetylation, the fibers and conductive‐vessel surfaces were successfully changed. The parenchyma cells were partially removed, and the fibrils started to split, because of the alkali action. This increased the effective surface area available for contact with the matrix. The mercerized and acetylated fibers were coated with cellulose acetate by the grafting of the acetyl group in the fibrils. The treatment used to remove lignin and hemicellulose caused changes in the fiber surface but did not damage the fiber structure because the fibrils remained joined in a bundle. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2333–2340, 2004  相似文献   

5.
Cotton fibers mercerized under the relaxed state were hydrolyzed with crude cellulase. The mercerization treatment examined included ammonia treatment, sodium hydroxide treatment, and two combined treatments using ammonia and sodium hydroxide. Crystalline regions of the mercerized fibers were hydrolyzed in the first step of hydrolysis. In this step, ammonia treatment decreased the crystallite size to a great extent due to the hydrolysis of the cellulose III crystalline phase. Cellulase treatment rendered the crystallite surface highly accessible to water molecules. The crystalline phase was closely related to water sorption of cellulase‐treated fibers. The sequence of treatment had an influence on the fiber structure in the case of the combined mercerization treatment with ammonia and sodium hydroxide. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 364–370, 2000  相似文献   

6.
Natural fibers are widely used as reinforcement in composites. Pine needles are one of the major biowaste generated by Pinus roxburgii plant. This species is found abundantly in the forests of Himachal Pradesh. In this work, composites of urea–resorcinol–formaldehyde resin‐reinforced with Pine needles fibers were prepared. Fibers were chemically modified to improve their compatibility with matrix. These fibers were mercerized with NaOH solution and acetylated to increase their hydrophobic character. The chemically modified fibers were characterized with Fourier transform infrared spectra, 13C‐nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy. The composites were prepared with treated and untreated fibers containing 30% fibers by weight using compression molding technique. The morphology of the materials thus obtained was evaluated by scanning electron microscopy. The chemical modifications of fibers improve fiber–matrix adhesion and also have markedly effect on mechanical properties of composites. Moreover, the thermal resistance of these composites was improved on chemical modification. These results indicate that chemically modified fibers exhibit better compatibility with the polymer matrix than that of untreated fiber. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013  相似文献   

7.
Short sisal fiber-reinforced styrene butadiene rubber (SBR) composites were prepared and characterized by the restricted solvent swelling technique. The solvent swelling characteristics of SBR composites containing untreated and bonding agent-added mixes were investigated in a series of aromatic solvents, such as benzene, toluene, and xylene. The diffusion experiments were conducted by the sorption gravimetric method. The adhesion between the rubber and short sisal fibers was evaluated from the restricted equilibrium swelling measurements. The anisotropy of swelling of the composite was confirmed by this study. The effect of fiber orientation in controlling the anisotropy of restricted swelling was also demonstrated. As the fiber content increased, the solvent uptake decreased, due to the increased hindrance and good fiber-rubber interactions. Bonding agent-added mixes showed enhanced restriction to swelling, due to the strong interfacial adhesion. The bonding system containing hexa-resorcinol in the mix produces an in-situ resin, which binds the fiber and the rubber matrix firmly. In addition, as the penetrant size increases from benzene to xylene, the uptake decreases. The swelling index values of the composites support this observation. Due to the improved adhesion between the short sisal fiber and SBR, the ratio of the volume fraction of rubber in the dry composite sample to the swollen sample (V T) decreases. The extent of fiber orientation of the composites was also analysed from the restricted swelling method. SEM studies of the composite revealed the orientation of short fibers. The sorption data support the Fickian diffusion trend, which is typical in the case of cross-linked rubbers.  相似文献   

8.
The reactivity of mercerized, ethanol-washed, never-dried cotton, as indicated by acetylation, is higher than that of mercerized, water-washed, never-dried cotton. Hygroscopicity measurements indicate that the ethanol-washed cotton is not fully amorphous. They also reveal that the accessibility of cotton treated with caustic soda solution of mercerizing strength will be higher than that of cotton treated with ethylamine regardless of whether water or a solvent of lower hydrogen-bonding capacity is used to extract the swelling agent. Based on microscopic examination, acetylation of mercerized, ethanol-washed fibers apparently takes place relatively uniformly. The breaking load of cotton fibers is similar to that of mercerized, ethanol-washed cotton fibers of about 8% acetyl content. However, the crystallinity of these materials, as shown by hygroscopicity studies, is markedly different. This indicates that the fine structure of the cotton fiber can be modified considerably without causing a loss in strength. Yarn tensile tests indicate that mercerized, ethanol-washed cotton yarn with acetyl content between 10% and 30% has a breaking load which is about 12% lower than that of cotton.  相似文献   

9.
Composites based on phenolic matrices and both untreated and alkali and ionized air–treated jute fibers were prepared. Different fiber lengths and fiber content were used to reinforce the phenolic matrices. The jute fibers were characterized with respect to lignin, holocellulose, ash, and humidity contents and also to the crystallinity index. The mechanical properties of fibers were investigated by means of tensile analysis and the morphology by SEM. The untreated and treated jute fiber–reinforced composites were characterized as to water absorption. The mechanical property and morphological aspects of the composites were evaluated by impact strength and photomicrographs obtained from SEM. Among the jute fiber treatments considered in the present work, the treatment with a solution of 5% NaOH presented the best results because: (1) the fiber presented a higher tensile strength, and a larger percentage of elongation at break; (2) the composite reinforced with this fiber presented the highest impact strength results when this was the unique treatment (20% of fiber), as well as when it was combined with ionized air (30% of fiber); and (3) the composite that presented the lowest water uptake was that reinforced with this fiber. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1077–1085, 2004  相似文献   

10.
The effect of poly(methyl methacrylate) modified water hyacinth fiber on properties of low density polyethylene (LDPE)/natural rubber (NR)/water hyacinth fiber (WHF) composites were investigated. The composites were prepared with Z-blade mixer at 180°C and rotor speed of 50 rpm. The poly(methyl methacrylate) modified water hyacinth fibers in LDPE/NR composites (LDPE/NR/WHF-PMMA) gave a greater value of tensile strength, Young's modulus, glass transition temperature (Tg), melting temperature (Tm), and % crystallinity compared to unmodified water hyacinth fibers in LDPE/NR composites (LDPE/NR/WHF). FTIR analysis shows the presence of ester carbonyl group and C-O ester group in poly (methyl methacrylate) modified water hyacinth fiber. The SEM micrograph also shows a better interfacial adhesion between the fibers and LDPE/NR matrixes for LDPE/NR/WHF-PMMA composites than LDPE/NR/WHF composites. LDPE/NR/WHF-PMMA composites had a lower value of interparticle spacing compared to LDPE/NR/WHF composites thatenhanced the interparticle interaction between fiber and LDPE/NR matrixes.  相似文献   

11.
Composites of natural rubber (NR) and short pineapple leaf fiber (PALF) were prepared on a laboratory two‐roll mill. The influences of untreated fiber content and orientation on the processing and mechanical properties of the composites were investigated. The dependence of extent of orientation on fiber concentration was also established. Sodium hydroxide (NaOH) solutions (1, 3, 5, and 7% w/v) and benzoyl peroxide (BPO) (1, 3, and 5 wt % of fiber) were used to treat the surfaces of PALFs. FTIR and scanning electron microscope (SEM) observations were made of the treatments in terms of chemical composition and surface structure. The tensile strength and elongation at break of the composites were later studied. The fiber–matrix adhesion was also investigated using SEM technique. It was found that all surface modifications enhanced adhesion and tensile properties. The treatments with 5% NaOH and 1% BPO provided the best improvement of composite strength (28 and 57% respectively) when compared with that of untreated fiber. The PALF‐NR composites also exhibited better resistance to aging than its gum vulcanizate, especially when combined with the treated fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1974–1984, 2006  相似文献   

12.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
New impact modifiers composed of a ground tire rubber core and acrylates and styrene copolymer shell have been obtained by using a suspension grafting polymerization. The corresponding rigid poly(vinyl chloride)/grafted ground tire rubber (RPVC/GGTR) composites with different contents of GGTR were then prepared in a Haake torque rheometer. Similar composites with raw ground tire rubber (without grafting polymerization) have also been prepared for comparison. Thermal stability, processability, mechanical properties, and surface morphology of the composites were extensively investigated by thermal gravimetric analysis (TGA), rheological measurement, tensile and impact tests, and scanning electron microscopy (SEM). The results showed that GGTR improved the processability of the RPVC/GGTR composites. The Izod impact strength of the composites could be significantly enhanced by the GGTR, while the tensile strength of the composites was almost unchanged, thus showing a large potential application in the fields of building materials such as poly(vinyl chloride) profiles. J. VINYL ADDIT. TECHNOL., 22:452–459, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
The interfacial adhesion between four different forms of jute fibers (sliver, bleached, mercerized and untreated) and polyolefinic matrices (LDPE and PP) was studied, as a critical factor affecting the mechanical behavior of these composites. The fiber‐matrix adhesion was estimated by means of the critical fiber length (lc) and the stress transfer ability parameter (τ); such parameters were obtained by Single Fiber Composite (SFC) tests. Tests were carried out to evaluate the mean tensile strength of the fibers, the mean critical fiber lengths and the stress transfer ability parameter for every fiber‐matrix combination, according to Weibull's statistical method. Thermal‐mechanical characterization of the fibers was also carried out to evaluate the resistance to processing conditions. A limited degradation of strength was observed, which, however, does not preclude the use of jute fibers as reinforcing means in polyolefin based composites. It was found that the adhesion was better in PP‐jute composites than in LDPE‐jute composites. In both cases the results showed that the sliver jute and the untreated jute had better adhesion to both matrices than had the bleached and the mercerized fibers. With both matrices the interface adhesion was in the order: mercerized < bleached < untreated = sliver.  相似文献   

15.
采用压延成张工艺制备碳纤维和玻璃纤维混杂增强非石棉橡胶基密封复合材料(NAFC),以横向抗拉强度作为表征混杂增强橡胶基密封材料中纤维与橡胶界面粘结性能的指标.通过扫描电镜(SEM)对材料横向拉伸试样断口进行形貌分析,及对材料的耐油、耐酸、耐碱性能进行测试,探讨了不同表面处理工艺对纤维与基体界面粘结效果的影响.研究结果表明,对玻璃纤维采用偶联剂KH-550浸渍后涂覆环氧树脂涂层,对碳纤维在空气氧化后涂覆环氧树脂涂层,可有效增强纤维、基体的界面粘结,所制得的混杂纤维增强复合材料具有较好的机械性能和耐介质性能.  相似文献   

16.
The diffusion of water and artificial seawater through cross‐linked coir fiber reinforced natural rubber composites was analyzed. The effect of fiber loading, chemical treatment, and bonding agent on liquid sorption was investigated. Based on the experiments, it is suggested that the probable mechanism of transport in gum compound is Fickian and that in composites is anomalous. The liquid uptake of all the composites is higher in water than that in artificial seawater. The composites showed increased swelling with fiber loading in water and artificial seawater. The influence of silica in the bonding system on swelling of the composites was also analyzed. In the case of gum compound, the desorption process is also Fickian, similar to the absorption of water and seawater. But the desorption of composites exhibited deviation from Fickian behavior. The effect of chemical treatment of coir fibers on the swelling was analyzed and found that the uptake of water and artificial seawater is reduced further in composites containing treated fibers. POLYM. COMPOS., 26:136–143, 2005. © 2005 Society of Plastics Engineers  相似文献   

17.
Processing characteristics, anistropic swelling, and mechanical properties of short-jute-fiber-and short-glass-fiber-reinforced styrene–butadiene rubber (SBR) composites have been studied both in the presence and absence of carbon black. Tensile and tear fracture surfaces of the composites have been studied using scanning electron microscopy (SEM) in order to assess the failure criteria. The effects of bonding agent. carbon black, jute fiber, and glass fiber on the fracture mode of the composites have also been studied. It has been found that jute fiber offers good reinforcement to SBR as compared to glass fibers. The poor performance of glass fibers as reinforcing agent is found to be mainly due to fiber breakage and poor bonding between fiber and rubber. Tensile strength of the fiber–SBR composites increases with the increase in fiber loading in the absence of carbon black. However, in the presence of carbon black a minimum was observed in the variation of strength against fiber loading. SEM studies indicate that fracture mode depends not on the nature of the fiber but on the adhesion between the fiber and the matrix.  相似文献   

18.
19.
Abstract

Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf–UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIH and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIH–HEA-treated kenaf–UPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf–UPE composites were discussed.  相似文献   

20.
Evidence is presented relating the interfacial bonding strength and the optical transmission of transparent glass fiber reinforced PMMA composites. The temperature dependent (20° to 50°C) optical transmission of composites that contained uncoated 13 μm glass fibers and 13 μm glass fibers coated with divinyltetramethyl disilazane or 3-(trimethoxysilyl)propyl methacrylate was found to decrease in the same order as the bond strength of the PMMA/glass fiber interface, namely, trimethoxy silane coated fiber, disilazane coated fiber, and uncoated fiber. SEM photographs showed similar fracture surfaces, clean fiber pull-out, and no apparent bonding of the glass fiber to the PMMA for the composites containing uncoated and disilazane coated fiber, whereas, the composite containing trimethoxy silane coated fiber showed virtually no clean fiber pullout. Additional evidence for differences in the bonding strength is seen in the degradation (penetration of water and fiber whitening) on aging at 23°C in air or water for composites containing uncoated fiber (most degradation), disilazane coated fiber (slight degradation), and trimethoxy silane coated fiber (no degradation). The optical transmission between 20° and 30°C at 600 to 800 nm for the composite containing trimethoxy silane coated fiber decreased the least with increasing temperature (from ∼85% to 70%) while the composite containing uncoated fiber decreased the most (from ∼85% to 32%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号