首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerizable cationic surfactant, vinylbenzyldimethylethanolammouium chloride (VBDEAC), was synthesized to functionalize montmorillonite (MMT) clay and used to prepare exfoliated polystyrene–clay nanocomposites. The organophilic MMT was prepared by Na+ exchanged montmorillonite and ammonium cations of the VBDEAC in an aqueous medium. Polystyrene–clay nanocomposites were prepared by free‐radical polymerization of the styrene containing intercalated organophilic MMT. Dispersion of the intercalated montmorillonite in the polystyrene matrix determined by X‐ray diffraction reveals that the basal spacing is higher than 17.6 nm. These nanocomposites were characterized by differential scanning calorimetry (DSC), transmission electron micrograph (TEM), thermal gravimetric analysis (TGA), and mechanical properties. The exfoliated nanocomposites have higher thermal stability and better mechanical properties than the pure polystyrene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1370–1377, 2002  相似文献   

2.
Nanocomposites based on biodegradable poly(?‐caprolactone) (PCL) and layered silicates (montmorillonite, MMT) were prepared either by melt interaction with PCL or by in situ ring‐opening polymerization of ?‐caprolactone as promoted by the so‐called coordination‐insertion mechanism. Both non‐modified clays (Na+ ‐MMT) and silicates modified by various alkylammonium cations were studied. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. Even at a filler content as low as 3 wt% of inorganic layered silicate, the PCL‐layered silicate nanocomposites exhibited improved mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as a result of a charring effect. It was shown that the formation of PCL‐based nanocomposites depended not only on the nature of the ammonium cation and related functionality but also on the selected synthetic route, melt intercalation vs. in situ intercalative polymerization. Interestingly enough, when the intercalative polymerization of ?‐caprolactone was carried out in the presence of MMT organo‐modified with ammonium cations bearing hydroxyl functions, nanocomposites with much improved mechanical properties were recovered. Those hybrid polyester layered silicate nanocomposites were characterized by a covalent bonding between the polyester chains and the clay organo‐surface as a result of the polymerization mechanism, which was actually initiated from the surface hydroxyl functions adequately activated by selected tin (II) or tin (IV) catalysts.  相似文献   

3.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

4.
The dielectric dispersion and relaxation process in melt‐compounded hot‐pressed poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay nanocomposite films of 0–20 wt % MMT concentration were investigated over the frequency range 20 Hz to 1 MHz at ambient temperature. X‐ray diffraction study of the nanocomposites evidences that the PEO has been intercalated into the MMT interlayer galleries with a helical‐type multilayer structures, which results the formation of unique parallel plane PEO–MMT layered structures. The relaxation times corresponding to PEO chain segmental motion were determined from the loss peak frequencies of different dielectric formalisms and the same is used to explore the interactions compatibility between PEO molecules and the MMT nano platelets. It is revealed that the loading of only 1 wt % MMT in PEO matrix significantly increases the PEO chain segmental motion due to intercalation, which further varies anomalously with increase of MMT concentration. The real part of dielectric function at 1 MHz, relaxation time, and dc conductivity of these melt‐compounded nanocomposites were compared with the aqueous solution‐cast PEO–MMT films. Considering the comparative changes in the values of various dielectric parameters, the effect of synthesization route on the intercalated/exfoliated‐MMT structures and the PEO chain dynamics were discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
《Polymer》2007,48(6):1490-1499
Two polymerizable cationic surfactants, (11-acryloyloxyundecyl)dimethyl(2-hydroxyethyl)ammonium bromide (hydroxyethyl surfmer) and (11-acryloyloxyundecyl)dimethylethylammonium bromide (ethyl surfmer), were used for the modification of montmorillonite (MMT) clay. The modification of MMT dispersions was carried out by ion exchange of the sodium ions in Na+-MMT by surfactants in aqueous media. Modified MMT clays were then dispersed in styrene and subsequently polymerized in bulk by a free-radical polymerization reaction to yield polystyrene–clay nanocomposites. An exfoliated structure was obtained using the ethyl surfmer-modified clay, whereas a mixed exfoliated/intercalated structure was obtained using the hydroxyethyl surfmer-modified clay. Nanocomposite structures were confirmed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The nanocomposites exhibited enhanced thermal stability and an increase in glass transition temperature, relative to neat polystyrene. The nanocomposites also exhibited enhanced mechanical properties, which were dependent on the clay loading. Intercalated polystyrene–clay nanocomposites were obtained using the non-polymerizable surfactant-modified clay (cetyltrimethylammonium bromide). Nanocomposites made from mixtures of surfmer-modified and CTAB-modified clays were also prepared, showing intermediate properties. However, when the nanocomposites were prepared in solution only intercalated morphologies were obtained. This was attributed to the competition between the solvent molecules and monomer in penetrating into clay galleries. These nanocomposites also exhibited enhanced thermal stability relative to the virgin polystyrene prepared by the same method. Similar temperatures of degradation (at 50% decomposition) were found for these nanocomposites relative to those prepared by bulk polymerization.  相似文献   

6.
Polyimide (PI)/clay hybrids were synthesized using the in situ solution intercalation method via poly(amic acid). The Na ion‐exchanged clays Na+‐saponite (SPT), Na+‐mica (Mica), and Na+‐montmorillonite (MMT) were used for the intercalation of PI polymer chains. Our dispersion results show that pristine SPT is more easily dispersed in a PI matrix than MMT or Mica. PI nanocomposites were prepared with various SPT contents to examine the variations with SPT content in the range 0–1 wt% of the thermomechanical properties, morphology, and optical transparency of the nanocomposites. The PI films have excellent optical transparencies, and are almost colorless. However, the optical transparency of the PI hybrid films decreases slightly with increases in the clay content. We also examined the relationship between the properties and clay content of the PI hybrid films using wide‐angle X‐ray diffraction (XRD) measurements, electronic microscopy (SEM and TEM), and universal tensile machine (UTM). The color intensities of the PI films were evaluated with a spectrophotometer. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Nanocomposites were prepared by melt blending various sodium (Na+) and potassium (K+) ionomers formed from poly(ethylene-co-methacrylic acid) and the M2(HT)2 organoclay formed from montmorillonite (MMT). The effects of the neutralization level of the acid groups and the precursor melt index on the morphology and properties of the nanocomposites were evaluated using stress-strain analysis, wide angle X-ray scattering (WAXS), and transmission electron microscopy (TEM) coupled with particle analysis. The aspect ratio generally increases as the neutralization level increases, except for Na+ ionomer nanocomposites with neutralization levels >50%. It appears from both WAXS and TEM analyses that Na+ ionomer nanocomposites have higher levels of MMT exfoliation and particle orientation in the flow direction than K+ ionomer nanocomposites. DSC results indicate that the level of crystallinity in the Na+ ionomers generally increases slightly with MMT addition, while the crystallinity in the K+ ionomers decreases slightly with MMT addition. The relative modulus of K+ ionomer nanocomposites increases as the degree of neutralization increases. The relative moduli of Na+ ionomer nanocomposites are higher than the relative modulus of K+ ionomer nanocomposites, likely due to the increased crystallinity of the Na+ ionomers and the decreased crystallinity of the K+ ionomers upon addition of MMT, the higher exfoliation levels measured by the aspect ratios and the particle densities, and the higher particle orientation indicated by TEM and WAXS. The relative modulus generally increases as the aspect ratio increases. The elongation at break generally decreases as the MMT content increases and as the neutralization level increases for both ionomer types. The fracture energy of most of the ionomers increases with the addition of MMT, reaches a maximum between 2.5 and 5 wt% MMT, and then decreases upon further MMT addition.  相似文献   

8.
Films of poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na+‐MMT) nanocomposites have been successfully prepared utilizing Na+‐MMT by N,N‐dimethylformamide solution casting. The nanocomposite films show high transparency, enhanced thermal resistance, and mechanical properties in comparison with the neat polymer film. The transparency of the films was investigated by UV‐vis spectra. The exfoliated dispersion of Na+‐MMT platelets in nanocomposites were investigated by X‐ray diffraction and transmission electron microscopy. The enhanced thermal resistance and mechanical properties of PMMA were studied by thermal gravimetric analysis and dynamic mechanical analysis, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Summary: A new technique, ultrasonically initiated in situ emulsion polymerization, was employed to prepare intercalated polystyrene/Na+‐MMT nanocomposites. FTIR, XRD, and TEM results confirm that the hydrophobic PS can easily intercalate into the galleries of hydrophilic montmorillonite via ultrasonically initiated in situ emulsion polymerization, taking advantages of the multi‐effects of ultrasonic irradiation, such as dispersion, pulverization, activation, and initiation. Properly reducing SDS concentration is beneficial to widen the d‐spacing between clay layers. However, the Na+‐MMT amount has little effect on the d‐spacing of nanocomposites. The glass transition temperature of nanocomposites increased as the percentage of clay increased, although the average molecular weight of PS decreased, and the decomposition temperature of the 1obtained nanocomposites moves to higher temperature.

TEM of PS/Na+‐MMT nanocomposite prepared by ultrasonically initiated in situ emulsion polymerization.  相似文献   


10.
Acrylic copolymer/montmorillonite (MMT) nanocomposites for warp sizing were prepared in the presence of Na+‐MMT by the in situ intercalative polymerization of acrylic acid, acrylamide, and methyl acrylate in water solution. The properties of the solution and cast film were tested according to an application in sizing process of the nanocomposite size with various MMT contents. The results indicate that, for an exfoliated structure corresponding to the MMT content increasing to 7 wt %, the performance parameters of solution viscosity, glass‐transition temperature, and tensile strength of the film increased and the moisture sorption, abrasion loss, and elongation at break of the film decreased. When the intercalated structure of MMT was 9 wt %, the gathered MMT layers acted as a common inorganic filler in the copolymer matrix, with limited contribution to the properties of the composite. The adhesion work of the nanocomposite solution was calculated by use of the Young–Dupre relation, which showed maximum values at an MMT content of 3 wt % on the surfaces of both the polyester and cellulose films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Different compositions of poly(ε-caprolactone) (PCL) and (organo-modified) montmorillonite were prepared by melt blending or catalyzed ring opening polymerization of ε-caprolactone. Microphase composites were obtained by direct melt blending of PCL and sodium montmorillonite (MMT-Na+). Exfoliated nanocomposites were obtained by in situ ring opening polymerization of ε-caprolactone with an organo-modified montmorillonite (MMT-(OH)2) by using dibutyltin dimethoxide as an initiator/catalyst. Intercalated nanocomposites were formed either by melt blending with organo-modified montmorillonite or in situ polymerization within sodium montmorillonite. The barrier properties were studied for water vapor and dichloromethane as an organic solvent. The sorption (S) and the zero concentration diffusion coefficient (D0) were evaluated for both vapors. The water sorption increases with increasing the MMT content, particularly for the microcomposites containing the unmodified MMT-Na+. The thermodynamic diffusion parameters, D0, were compared to the value of the parent PCL: both microcomposites and intercalated nanocomposites show diffusion parameters very near to PCL. At variance exfoliated nanocomposites show much lower values, even for small montmorillonite content. In the case of the organic vapor, the value of sorption at low relative pressure is mainly dominated by the amorphous fraction present in the samples, not showing any preferential adsorption on the inorganic component. At high relative pressure the isotherms showed an exponential increase of sorption, due to plasticization of the polyester matrix. The D0 parameters were also compared to those of the unfilled PCL; in this case, both the exfoliated and the intercalated samples showed lower values, due to a more tortuous path for the penetrant molecules.  相似文献   

12.
Nanocomposites of poly(methyl methacrylate) (PMMA) filled with 3 wt% of modified natural Algerian clay (AC; montmorillonite type) were prepared by either in situ polymerization of methyl methacrylate initiated by 2,2′‐azobisisobutyronitrile or a melt‐mixing process with preformed PMMA via twin‐screw extrusion. The organo‐modification of the AC montmorillonite was achieved by ion exchange of Na+ with octadecyldimethylhydroxyethylammonium bromide. Up to now, this AC montmorillonite has found applications only in the petroleum industry as a rheological additive for drilling muds and in water purification processes; its use as reinforcement in polymer matrices has not been reported yet. The modified clay was characterized using X‐ray diffraction (XRD), which showed an important shift of the interlayer spacing after organo‐modification. The degree of dispersion of the clay in the polymer matrix and the resulting morphology of nanocomposites were evaluated using XRD and transmission electron microscopy. The resulting intercalated PMMA nanocomposites were analysed using thermogravimetric analysis and differential scanning calorimetry. The glass transition temperature of the nanocomposites was not significantly influenced by the presence of the modified clay while the thermal stability was considerably improved compared to unfilled PMMA. This Algerian natural montmorillonite can serve as reinforcing nanofiller for polymer matrices and is of real interest for the fabrication of nanocomposite materials with improved properties. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

14.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004  相似文献   

15.
Heat ageing and thermal stability of a silicone rubber (SR) filled with montmorillonite clay (MMT) was investigated. Three types of rubber nanocomposites were prepared with highly exfoliated Cloisite 30B (SR/C30B), intercalated/exfoliated Cloisite Na+ (SR/Na+MMT), and highly intercalated Cloisite 20A (SR/C20A). This study showed that the SR/C30B nanocomposite exhibited excellent heat resistance in comparison to the other two nanocomposites and neat SR as revealed by higher retention strength. The thermal stability of the rubber in air was strongly dependent on the clay morphology and increased in the following order: highly intercalated/exfoliated SR/Na+MMT < highly intercalated SR/C20A < highly exfoliated SR/C30B. The thermogravimetric analyses of the SR/C30B nanocomposite showed a substantial increase in the final residue in comparison with the neat SR. This indicated a major improvement in the thermal stability of the rubber containing the exfoliated clay, which was also supported by the higher activation energy of decomposition measured for the nanocomposite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41061.  相似文献   

16.
On the basis of the fusion behavior of poly(vinyl chloride) (PVC), the influence of compounding route on the properties of PVC/(layered silicate) nanocomposites was studied. Four different compounding addition sequences were examined during the melt compounding of PVC with montmorillonite (MMT) clay, including (a) a direct dry mixing of PVC and nanoclay, (b) an addition of nanoclay at compaction, (c) an addition of nanoclay at the onset of fusion, and (d) an addition of nanoclay at equilibrium torque. Both unmodified sodium montmorillonite (Na+‐MMT) and organically modified montmorillonite (Org.‐MMT) clays were used, and the effect of the addition sequence of the clay during compounding on its dispersion in the matrix was evaluated by X‐ray diffraction and transmission electron miscroscopy. The surface color change, dynamic mechanical analysis, and flexural and tensile properties of PVC/clay nanocomposites were also studied. The experimental results indicated that both the extent of property improvement and the dispersion of nanoparticles in PVC/(layered silicate) nanocomposites are strongly influenced by the degree of gelation achieved in PVC compounds during processing. The addition of nanoclay to PVC must be accomplished at the onset of fusion, when PVC particles are reduced in size, in order to produce nanocomposites with better nanodispersion and enhanced mechanical properties. Overall, rigid PVC nanocomposites with unmodified clay (Na+‐MMT) were more thermally stable and exhibited better mechanical properties than their counterparts with organically modified clay (Org.‐MMT). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

17.
In this study, the main goal is to obtain montmorillonite nanocomposites of polypropylene (PP). To achieve this goal, a two‐phase study was performed. In the first part of the work, organomodified clay (OMMT) was synthesized and characterized. Octadecyltrimethylammonium bromide (ODTABr) cationic surfactant was added to the clay (Na‐activated montmorillonite, MMT) dispersions in different concentrations in the range of 5 × 10?5–1 × 10?2 mol/L. Rheologic, electrokinetic, and spectral analyses indicated that ODTABr has interacted with MMT at optimum conditions when the concentration was 1 × 10?2 mol/L. In the second part, modified (OMMT) and unmodified (MMT) montmorillonite were used to obtain PP nanocomposites (OMMT/PP and MMT/PP, respectively). The nanocomposites were prepared by melt intercalation where the montmorillonite contents were 1 or 5% (w/w) for each case. The thermal analyses showed that the thermal properties of OMMT/PP nanocomposites were better than MMT/PP, and both of them were also better than pure polymer. Increase in the concentration of MMT (or OMMT) decreased the thermal resistance. Based on the IR absorption intensity changes of regularity and conformational bands, it is found that the content of the helical structure of macromolecular chains has increased with increasing concentrations of both MMT and OMMT in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A well‐defined styrene–acrylonitrile copolymer/montmorillonite (SAN‐MMT) nanocomposite has been prepared by emulsion copolymerization of styrene and acrylonitrile in the presence of sodium ion exchanged montmorillonite (Na+‐MMT). This direct and one‐step polymerization technique yielded nanocomposites intercalated with styrene‐acrylonitrile copolymer without occurrence of significant delamination of MMT. The purified products by hot tetrahydrofuran extraction for up to 5 days gave evidences of copolymer intercalation. Those infrared spectra obtained from the purified products revealed the characteristic absorbances due to styrene, acrylonitrile, and MMT. Room temperature powder X‐ray diffraction patterns of the purified product exhibited increased 001 d‐spacing about 1.60 nm. The transmission electron microscopy micrograph of unpurified products confirmed that the 1–2‐nm sized silicate layers are arranged in good order. The onset temperature of purified products are found to be moved to higher temperature, while the thermograms of differential scanning calorimetry show nothing observable transition. The modulus of elasticity of the product was increased with increasing content of MMT, whereas the stress at maximum load was decreased with the increments of MMT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 179–188, 1999  相似文献   

19.
Montmorillonite/polypyrrole (MMT/PPy) nanocomposites were prepared by the in situ polymerization of pyrrole in the presence of MMT. The morphology of the MMT/PPy nanocomposites as examined by scanning electron microscopy differs slightly from that of the untreated MMT but markedly from that of polypyrrole. X-ray photoelectron spectroscopy (XPS) showed that the materials have MMT-rich surfaces, an indication that polypyrrole is essentially intercalated in the host clay galleries. The transmission electron microscopy showed, that the interlamellar spacing of the untreated MMT increased from 1.25 to 18.9 nm, when compared to nanocomposite MMT/10.8% PPy. Moreover, XPS highlighted the cation exchange of Na+ from montmorillonite by K+ (from the oxidant) and by the positively charged polypyrrole chains. Inverse gas chromatography indicated that the nanocomposites are high surface energy materials with a dispersive contribution to the surface energy reaching 200 mJ/m2 at 150 °C, for a PPy loading of 21.4 wt%. The values of the MMT/PPy nanocomposites were correlated to the changes in the specific surface area of the MMT induced by the intercalation of polypyrrole.  相似文献   

20.
Polyamide 6/Na+ montmorillonite (Na+ MMT) nanocomposites (NCs) were produced in a corotating twin screw extruder. Water was injected into the extruder as an intercalating/exfoliating agent. The wide angle X‐ray diffraction and linear dynamic measurements were used to investigate the structure of the prepared samples. The results showed that the contact time between water and melt PA6/Na+MMT in the extruder is an important factor to achieve a high level of exfoliation. The ratio of water‐injection rate to clay feeding rate did not reveal a major effect on the exfoliation of pristine MMT. The results also demonstrated that the order of injection of water during the mixing process did not have a distinguishable effect on the level of exfoliation. This processing method was found to be controlled by a diffusion mechanism caused by the presence of water molecules during the process. Improvement of tensile properties is in a great agreement with the rheological and morphological findings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号