首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blends of very low density polyethylene (VLDPE) and high density polyethylene (HDPE) were prepared by melt extrusion. These blends exhibit a tendency to phase segregate when they are slow cooled from the melt. If they are cooled at increasingly faster rates, a finite population of co‐crystals can be isolated from the rest of the phase segregated material, indicating that this system is probably miscible in the melt but phase separates during cooling. Transmission electron microscopy observations are consistent with the blend melt miscibility since inter‐lamellar mixing was clearly appreciated in the samples examined. Other effects arising from interactions between the polymers were the nucleation of VLDPE rich phase by HDPE rich phase, and a melting point depression of HDPE rich phase caused by a dilution effect exerted by molten VLDPE rich phase. After a successive self‐nucleation and annealing thermal fractionation procedure is applied to the blends, phase separation dominates the behavior, although some small fraction of co‐crystals was still present.  相似文献   

2.
Melt rheology and mechanical properties in linear low density polyethylene (LLDPE)/low density polyethylene (LDPE), LLDPE/high density polyethylene (HDPE), and HDPE/LDPE blends were investigated. All three blends were miscible in the melt, but the LLDPE/LDPE and HDPE/LDPE blends exibiled two crystallization and melting temperatures, indicating that those blends phase separated upon cooling from the melt. The melt strength of the blends increased with increasing molecular weight of the LDPE that was used. The mechanical properties of the LLDPE/LDPE blend were higher than claculated from a simple rule of mixtures, whiele those of the LLDPE/HDPE blend conformed to the rule of mixtures, but the properties of HDPE/LDPE were less than the rule of mixtures prediction.  相似文献   

3.
Understanding the co‐crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co‐crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler ? Natta linear low density polyethylene (ZN‐LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN‐LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X‐ray scattering, small angle X‐ray scattering and field emission SEM techniques revealed the formation of two distinct co‐crystals in the blends. Fine LDPE/ZN‐LLDPE co‐crystals, named tie crystals, dispersed within the amorphous gallery between the coarse HDPE/ZN‐LLDPE co‐crystals were characterized for the first time in this study. It is shown that the tie crystals strengthen the amorphous gallery and play a major role in the mechanical performance of the blend.© 2016 Society of Chemical Industry  相似文献   

4.
A large increase in the crystallization temperature of low density polyethylene (LDPE) when blended with high density polyethylene (HDPE) is reported. Such behavior is observed for quenched LDPE rich blends when the low melting component is cooled from 119 °C under controlled conditions in the differential scanning calorimeter. It is suggested that the presence of the most linear LDPE methylene segments within the HDPE-rich crystals (cocrystallization phenomenon) facilitates the nucleation of the more branched LDPE segments on cooling. On reheating, a depression in the low melting temperature component (LDPE) is observed with increasing HDPE content in the blend. Received: 29 December 1996/Revised: 11 March 1997/Accepted: 14 March 1997  相似文献   

5.
A simple technique employing differential scanning calorimetry (DSC) to investigate the molecular structure of ethylene copolymers is presented in this paper. Three commercial Ziegler–Natta catalysed linear low density polyethylenes (LLDPE) and a commercial single‐site catalysed very low density polyethylene (VLDPE) were subjected to continuous cooling at a slow rate of 0.08 °C min?1. Like other thermal fractionation techniques, the slow continuous cooling (SCC) technique segregates polymers according to their branching density, allowing the short chain branching (SCB), lamellar thickness (L) and methylene sequence length (MSL) distribution to be determined using the DSC melting curves. It was found that the single‐site catalysed VLDPE exhibits narrow SCB, L and MSL distributions, with shorter methylene sequences. In contrast, the Ziegler–Natta catalysed LLDPEs have much broader bimodal SCB, L and MSL distributions, with less SCB, and are composed of both short and long methylene sequences. LLDPEs have thicker lamellae compared with VLDPE (12.9, 12.5, 9.8 nm versus 6.7 nm) and the lamellar thickness values are consistent with the results measured by transmission electron microscopy (TEM). The slow continuous cooling and stepwise cooling techniques are complementary: the former provides a continuous distribution profile and the latter a well‐defined histogram for the lamellar thickness. The results obtained are qualitatively comparable to those gained by temperature rising elution fractionation (TREF), because the cooling rate used here is of the order of the rates used in TREF analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Crosslinking and processing characteristics of polyethylenes (PEs) with different molecular architectures, namely high‐density polyethylene (HDPE), linear low‐density polyethylene (LLDPE), and low‐density polyethylene (LDPE), were studied with regard to the effects of peroxide modifications and coolant flow rates. Dicumyl peroxide (DCP) and di‐tert‐butyl peroxide (DTBP) were used as free‐radical inducers for crosslinking the PEs. The characteristics of interest included normalized gel content, real‐time temperature profiles and their cooling rates, exothermic period, crystallinity level, crystallization temperature, and heat distortion temperature. The experiments showed that LDPE exhibited the highest normalized gel content. The real‐time cooling rates, taken from the temperature profiles for all PEs before the crystallization region, were greater than those after the crystallization region. The cooling rate of the PEs increased with the presence of DCP, whereas the crystallization temperature of the PEs was lowered. The HDPE appeared to show the longest exothermic period as compared with those of the LLDPE and LDPE. The exothermic period showed an increase with increasing coolant flow rate, but it was decreased by the use of DCP. As for the effect of peroxide type, the gel content and cooling rate of the PE crosslinked by DCP were higher than those for the PE crosslinked by DTBP. The DTBP was the more effective peroxide for introducing crosslinks and simultaneously maintaining the crystallization behavior of the PE. J. VINYL ADDIT. TECHNOL., 20:80‐90, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
Ethylene polymers, including HDPE, Ziegler–Natta‐catalyzed LLDPE (Z–N LLDPE), metallocene‐catalyzed LLDPE (m‐LLDPE), and LDPE were thermally treated by different procedures, that is, quenching, slow cooling, and thermal segregation. These PE samples, having different thermal histories, were then irradiated with various doses, that is, 0, 13, 35, and 70 Mrad, by gamma ray using a 60Co radiation source. The melting and crystallization behaviors of these irradiated samples were studied by a differential scanning calorimeter (DSC). The effects of the thermal histories and irradiation on the polymers were evaluated by their melting temperatures (Tm), crystallization temperatures (Tc), and heat enthalpies (ΔH) in the heating and cooling scans. The results indicated that irradiation affects the samples having different thermal histories in different ways. The effects of the dosage on each kind of sample are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 536–544, 2003  相似文献   

8.
Melting curves, obtained by differential scanning calorimetry, are used to estimate crystal size distributions. The proposed theoretical analysis is applied to different types of polyethylene, including high‐density polyethylene (HDPE), metallocene catalyzed linear low‐density polyethylenes (m‐LLDPE), blends of m‐LLDPEs, and Ziegler‐Natta catalyzed LLDPEs (ZN‐LLDPE). Theoretical predictions are in agreement with experimental results. A generalized melting temperature equation successfully predicts the melting temperatures of all the LLDPEs, although it was initially proposed for homogeneous copolymers with excluded comonomers. A new definition of the heat of fusion for pure crystals is proposed. This heat of fusion can be calculated from the average crystal size or the crystal size number distribution.  相似文献   

9.
Poly(ethylene terephthalate) (PET) sheets of different crystallinity were obtained by annealing the amorphous PET (aPET) sheets at 110°C for various times. The peaks of enthalpy recovery and double cold‐crystallization in the annealed aPET samples with different crystallinity were investigated by a temperature‐modulated differential scanning calorimeter (TMDSC) and a dynamic mechanical analyzer (DMA). The enthalpy recovery peak around the glass transition temperature was pronounced in TMDSC nonreversing heat flow curves and was found to shift to higher temperatures with higher degrees of crystallinity. The magnitudes of the enthalpy recovery peaks were found to increase with annealing times for samples annealed ≤30 min but to decrease with annealing times for samples annealed ≥40 min. The nonreversing curves also found that the samples annealed short times (≤40 min) having low crystallinity exhibited double cold‐crystallization peaks (or a major peak with a shoulder) in the region of 108–130°C. For samples annealed long times (≥50 min), the cold‐crystallization peaks were reduced to one small peak or disappeared because of high crystallinity in these samples. The double cold‐crystallization exotherms in samples of low crystallinity could be attributed to the superposition of the melting of crystals, formed by the annealing pretreatments, and the cold‐crystallizations occurring during TMDSC heating. The ongoing crystallization after the cold crystallization was clearly seen in the TMDSC nonreversing heat flow curves. DMA data agreed with TMDSC data on the origin of the double cold‐crystallization peaks. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The rigid amorphous phase, the low temperature melting endotherm, and their development with thermal treatment in poly(ethylene terephthalate) (PET) were investigated by means of modulated differential scanning calorimetry. The differential of the reversing heat capacity and nonreversing heat flow signals were used to analyze the behavior of the glass transition and the low temperature melting endotherm. With increasing annealing time, the increment of the heat capacity at the glass‐transition temperature decreased and the increment of heat capacity at the annealing temperature increased. It was suggested that the origin of the low temperature melting endotherm mainly resulted from the transition of the rigid amorphous fraction for the PET used. The glasslike transition of the rigid amorphous fraction occurred between the glass transition and melting. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2779–2785, 2001  相似文献   

11.
The crystallization of a series of low‐density polyethylene (LDPE)‐ and linear low‐density polyethylene (LLDPE)‐rich blends was examined using differential scanning calorimetry (DSC). DSC analysis after continuous slow cooling showed a broadening of the LLDPE melt peak and subsequent increase in the area of a second lower‐temperature peak with increasing concentration of LDPE. Melt endotherms following stepwise crystallization (thermal fractionation) detailed the effect of the addition of LDPE to LLDPE, showing a nonlinear broadening in the melting distribution of lamellae, across the temperature range 80–140°C, with increasing concentration of LDPE. An increase in the population of crystallites melting in the region between 110 and 120°C, a region where as a pure component LDPE does not melt, was observed. A decrease in the crystallite population over the temperature range where LDPE exhibits its primary melting peaks (90–110°C) was noted, indicating that a proportion of the lamellae in this temperature range (attributed to either LDPE or LLDPE) were shifted to a higher melt temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1009–1016, 2000  相似文献   

12.
Blends of linear‐low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and high‐ density polyethylene (HDPE) were foamed and characterized in this research. The goal was to generate clear dual peaks from the expanded polyethylene (EPE) foam beads made from these blends in autoclave processing. Three blends were prepared in a twin‐screw mixing extruder at two rotational speeds of 5 and 50 rpm: Blend1 (LLDPE with 20 wt% HDPE), Blend 2 (LLDPE with 20 wt% LDPE), and Blend 3 (LLDPE with 10 wt% HDPE and 10 wt% LDPE). The differential scanning calorimetric (DSC) measurement was taken at two cooling rates: 5 and 50°C/min. Although no dual peaks were present, the results showed that blending with HDPE has a more noticeable effect on the DSC curve of LLDPE than blending with LDPE. Also, the rotational speed and cooling rate affected the shape of the DSC curves and the percentage area below the onset point. The DSC characterization of the batch foamed blends revealed multiple peaks at certain temperatures, which may be mainly due to the annealing effect during the gas saturation process. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
The effect of time–temperature treatment on the mechanical properties and morphology of polyethylene–polypropylene (PE–PP) blends was studied to establish a relationship among the thermal treatment, morphology, and mechanical properties. The experimental techniques used were polarized optical microscopy with hot‐stage, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and tensile testing. A PP homopolymer was used to blend with various PEs, including high‐density polyethylene (HDPE), low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and very low density polyethylene (VLDPE). All the blends were made at a ratio of PE:PP = 80:20. Thermal treatment was carried out at temperatures between the crystallization temperatures of PP and PEs to allow PP to crystallize first from the blends. A very diffuse PP spherulite morphology in the PE matrix was formed in partially miscible blends of LLDPE–PP even though PP was present at only 20% by mass. Droplet‐matrix structures were developed in other blends with PP as dispersed domains in a continuous PE matrix. The SEM images displayed a fibrillar structure of PP spherulite in the LLDPE–PP blends and large droplets of PP in the HDPE–PP blend. The DSC results showed that the crystallinity of PP was increased in thermally treated samples. This special time–temperature treatment improved tensile properties for all PE–PP blends by improving the adhesion between PP and PE and increasing the overall crystallinity. In particular, in the LLDPE–PP blends, tensile properties were improved enormously because of a greater increase in the interfacial adhesion induced by the diffuse spherulite and fibrillar structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1151–1164, 2000  相似文献   

14.
不同密度聚乙烯共混物性质的研究   总被引:1,自引:0,他引:1  
讨论了HDPE与LDPE及HDPE与LLDPE共混物的性质。研究表明共混物的力学性能、结晶度、熔点及维卡软化点都随密度ρ的变化呈规律性变化,由此总结出综合性能较好的共混物密度范围。  相似文献   

15.
张建耀  刘少成 《弹性体》2007,17(4):39-43
利用红外光谱、差示扫描量热法等方法研究了高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)及其共混物的乙烯基三乙氧基硅烷(VTEOS)接枝及交联产物的分子结构、熔融行为。结果表明,VTEOS接枝交联PE能力为:LLDPE>HDPE/LLDPE共混物>HDPE;接枝和交联使HDPE、LLDPE及其共混物的结晶度和熔点降低,晶粒变得不均匀。  相似文献   

16.
Solution fractionation for four different polyethylenes including high‐density polyethylene (HDPE), low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and very low‐density polyethylene (VLDPE) are conducted by stepwise controlling both the temperature and the amount of precipitant. The size exclusion chromatograph (SEC) measurements indicate that solution fractionation technique can successfully separate all the polyethylene samples in accordance with their molecular weight and molecular‐weight distributions. In addition, infrared spectroscopy analysis shows that the degree of short‐chain branching for each fraction of each polyethylene varies with the fraction's molecular weight. The effect of the molecular weight with different short‐chain branching on each fraction's crystallinity represents the characteristics of chain components for different polyethylenes. The crystallinities of HDPE, LLDPE, and LDPE decrease with the increase in their molecular weights; however, for VLDPE, its crystallinity increases with the increase in the molecular weight. The research revealed that the degree of short‐chain branching, together with the molecular weight, can greatly affect the crystallinity of polyethylene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2542–2549, 2004  相似文献   

17.
The thermal and crystal morphological properties of amorphous and melt crystallized poly(oxy‐1,4‐phenyleneoxy‐1,4‐phenylenecarbonyl‐1,4‐phenylene) (PEEK) were investigated. Two different molecular weights were studied by Temperature Modulated DSC (TMDSC) over a broad range of annealing times and temperatures. The lower molecular weight PEEK under all crystallization conditions was found to exhibit secondary crystal melting in the low endotherm region, followed by melting of primary crystals melting in the low endotherm region, followed by melting of primary crystals superimposed with a large recrystallization contribution. Primary crystal melting broadly overlapped with melting of the recrystallized species and contributed to the broad highest endotherm. Recrystallization contributions and the interpretation of TMDSC were partially confirmed by independent rapid heating rate melting point determinations and variable heating rate DSC. The higher molecular weight PEEK showed many similarities but generally had smaller levels of reorganization above the annealing temperature under most higher temperature crystallization conditions. TMDSC provides excellent resolution of recrystallization and related events compared to standard DSC. The broad and substantial exothermic recrystallization in amorphous samples was also examined, showing that recrystallization continues through the final melting region.  相似文献   

18.
Nonisothermal crystallization kinetics of linear bimodal–polyethylene (LBPE) and the blends of LBPE/low‐density polyethylene (LDPE) were studied using DSC at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of LBPE and LBPE/LDPE blends. The theory of Ozawa was also used to analyze the LBPE DSC data. Kinetic parameters such as, for example, the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the crystallization peak temperature (Tp), and the half‐time of crystallization (t1/2) were determined at various scanning rates. The appearance of double melting peaks and double crystallization peaks in the heating and cooling DSC curves of LBPE/LDPE blends indicated that LBPE and LDPE could crystallize, respectively. As a result of these studies, the Zc of LBPE increases with the increase of cooling rates and the Tp of LBPE for LBPE/LDPE blends first increases with increasing LBPE content in the blends and reaches its maximum, then decreases as the LBPE content further increases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2431–2437, 2003  相似文献   

19.
The melting, isothermal and nonisothermal crystallization behaviors of poly(3‐hydroxybutyrate) (PHB) have been studied by means of temperature modulated differential scanning calorimetry (TMDSC) and conventional DSC. Various experimental conditions including isothermal/annealing temperatures (80, 90, 100, 105, 110, 120, 130, and 140°C), cooling rates (2, 5, 10, 20, and 50°C/min) and heating rates (5, 10, 20, 30, 40, and 50°C/min) have been investigated. The lower endothermic peak (Tm1) representing the original crystals prior to DSC scan, while the higher one (Tm2) is attributed to the melting of the crystals formed by recrystallization. Thermomechanical analysis (TMA) was used to evaluate the original melting temperature (Tmelt) and glass transition temperature (Tg) as comparison to DSC analysis. The multiple melting phenomenon was ascribed to the melting‐recrystallization‐remelting mechanism of the crystallites with lower thermal stability showing at Tm1. Different models (Avrami, Jeziorny‐modified‐Avrami, Liu and Mo, and Ozawa model) were utilized to describe the crystallization kinetics. It was found that Liu and Mo's analysis and Jeziorny‐modified‐Avrami model were successful to explain the nonisothermal crystallization kinetic of PHB. The activation energies were estimated in both isothermal and nonisothermal crystallization process, which were 102 and 116 kJ/mol in respective condition. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42412.  相似文献   

20.
Linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) differ significantly in their branching types and branching distributions. For a comprehensive analysis, preparative temperature rising elution fractionation and/or preparative molar mass fractionation are used to fractionate typical LLDPE and LDPE bulk resins into narrowly distributed fractions. The chain structures of the bulk resins and their fractions are further analysed using SEC, crystallization analysis fractionation, DSC and high‐temperature HPLC to provide detailed information on short chain branching in LLDPE and long chain branching in LDPE. For LDPE it is shown that the multiple fractionation approach is a powerful source of sample libraries that may have similar molar masses and different branching structures or alternatively similar branching but different molar masses. The analysis of these library samples by thermal analysis provides a much deeper insight into the molecular heterogeneity of the samples compared to bulk sample analysis. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号