首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of a new crusher i.e. blade crusher on the quality of virgin olive oil from two different italian cultivars (Coratina and Oliarola) was determined. In addition the quality of this oil was compared with that of olive oil extracted with the traditional hammer crusher. Tests were performed in an industrial oil mill using the two different crushing instruments. Results obtained showed that quality parameters i.e. free fatty acids, peroxide value, UV absorption and total phenols content as well as the phenolic composition of oils were not significantly affected by the two different crushers used. On the contrary, the use of the blade crusher influenced the composition of the volatile compounds. In particular, the oils obtained using the blade crusher showed significant increases of some aldehydes such as 1‐hexanal and trans‐2‐hexenal, esters such as hexyl acetate and 3‐hexenyl acetate and a reduction of alcohols such as 1‐hexanol. Moreover, the identified pigments of the oils produced using the blade crusher were found at concentrations slightly lower than those in oils obtained after using the hammer crusher. Finally, results of the sensory analysis showed an improved organoleptic quality for the oils obtained using the blade crusher due to an increase of the cut‐grass and floral sensory notes.  相似文献   

2.
One of the main challenges that virgin olive oil producers face today is an accurate prediction of the sensory quality of the final product prior to the milling of the olives. The possibility that olive paste aroma can be used as a predictive measurement of virgin olive oil quality is studied in this paper. The study was centered on distinguishing the aroma of olive pastes that produced virgin olive oils without sensory defects from the aroma of olive pastes the virgin olive oils of which showed sensory defects. Olive pastes were analyzed by solid‐phase microextraction‐gas chromatography and a sensor system based on metal oxide sensors. Forty‐four volatile compounds were identified in olive pastes, all of them being also present in virgin olive oil. Six volatile compounds – acetic acid, octane, methyl benzene, (E)‐2‐hexenal, hexyl acetate and 3‐methyl‐1‐butanol – distinguished both kinds of pastes with only five misclassified samples. Five metal oxide sensors were able to classify the olive pastes with only two erroneous classifications.  相似文献   

3.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

4.
A large number of virgin olive oil samples obtained from different areas in Greece were analyzed for various quality parameters. The work focuses on the colorimetric determination of total phenols with the Folin‐Ciocalteu reagent and its importance in predicting shelf life of virgin olive oil. The results indicate a good correlation of total polar phenol content with the stability of the oil. Colorimetric determination of ortho‐diphenol content does not seem to be a better means for predicting virgin olive oil stability. RP‐HPLC quantification of hydroxytyrosol and tyrosol in their free form gives poor results in the case of freshly extracted oils. It is concluded that until an easy‐to‐manage HPLC method will be available, which will quantify accurately both free and bound forms of hydroxytyrosol and other phenolics, the colorimetric method for the determination of total polar phenols remains a good practical means to evaluate the stability of virgin olive oil.  相似文献   

5.
Polar compounds of virgin olive oils were analyzed. They influence oil flavor and aroma and improve the shelf-life of the oil. The orthodiphenolic fraction is particularly significant for oil stability because of its antioxidative activity. A relationship between the composition of the whole fraction of polar compounds and the state of health of the olives was established. For this purpose, oil samples were obtained from olives that had reached different degrees of ripeness and that had been affected by Dacus oleae infestation differently. The polar compounds were then analyzed by high-performance liquid chromatography. The data set was studied by means of chemometric methods. Partial least squares regression was used to obtain models that show a significant correlation between composition of the oil’s polar compounds and conditions of the olives sampled. In particular, compounds with antioxidative activity were directly linked with the state of health of the olives. The models obtained allow tracing of the state of health of the olives sampled through analysis of the polar fraction of virgin olive oil with a high degree of accuracy, and thus prediction of the oil’s expected shelf life.  相似文献   

6.
The aim of the present work was to investigate the influence of fruit ripening on oil quality and volatile compounds in an attempt to establish an optimum harvesting time for Oueslati olives, the minor olive variety cultivated in Tunisia. Our results showed that many analytical parameters, i.e., peroxide value, UV absorbance at 232–270 nm, chlorophyll pigments, carotenoids and oleic acid contents decreased during ripening, whilst linolenic acid increased. Free acidity remained practically stable with a very slight rise at the highest maturity index. The volatile compounds emitted by the Oueslati olive oil were characterized and quantified by HS‐SPME‐GC‐EIMS. Twenty‐three volatile compounds were identified, mainly aldehydes, sesquiterpenes and esters. The results show variations in the volatile fractions and quality parameters of Oueslati extra virgin olive oil obtained at different olive‐ripening stages. Fifteen sesquiterpenes were identified for the first time in this cultivar, mainly hydrocarbon derivatives, but also oxygenated ones. On the basis of the quality parameters and volatile fractions studied, the best stage of Oueslati olive fruits for oil processing seems to be at ripeness index about 3.0. Indeed, these results suggested the possibility of using sesquiterpenes for olive authenticity and traceability and demonstrated that the volatile fractions can be used as indicators of the degree of ripening of the olives used to obtain the corresponding virgin olive oils.  相似文献   

7.
In the last years, metallic crushers substituted granite stone mill with some variations in the organoleptic oil characteristics. To control the influence of the crushing method on the yield and oil quality, the olive pastes were obtained using three different ways: (i) new metallic crusher at mobile knives; (ii) granite stone mill; (iii) double olive crushing by the metallic crusher and the granite stone mill. With the aim to ascertain the useful use of a new metallic crusher (at mobile knives), experimental tests were carried out in an industrial oil mill. This oil mill is equipped by a centrifugal decanter generating two oil flows: first and second extraction (recovery) oils. The results showed that the yields obtained by different methods were satisfactory. No statistically significant differences have been observed in terms of oil yield and quality when different crushing devices were used. All first extracted oils are extra virgin with similar organoleptic characteristics, especially for the fruity intensity and for the bitter and pungent taste, as confirmed by the composition of volatile substances and the content of phenolic oil compounds. The recovery oils (second extraction oils) showed, in contrast to first extraction oils, a more intense green colour and a higher content of total phenols. Practical applications: Processing of sound olives with the right ripening grade and good quality allows to easily obtain an extra virgin olive oil, with commercial qualitative parameters according to the European Union requirements. However, different olive crushing systems affect the concentrations of some compounds responsible of aroma and taste (phenolic compounds). The use of the more violent metallic crushers facilitates obtaining oils with total phenol content higher than when using a stone mill. Here we used a particular metallic crusher (at knives) that, however, is suitable to replace the granite stone mill when a less pungent and bitter oil is required.  相似文献   

8.
Polyphenolic substances enhance the resistance to oxidation of virgin olive oils, but an excess of polyphenols determines a marked bitter, somewhat tannic taste of the oil, similar to the taste of unripe olives. Tests have been carried out on drupes of different cultivars in industrial productions to evaluate the effect of the machines used to prepare olive pastes on the contents of polyphenols in the oils. Notably greater amounts of polyphenols were found in the oils extracted from hammer-crushed pastes than in the oils extracted from milled pastes. The kneading process which follows, especially if it is long, often reduces the amounts of total polyphenols. Therefore, in order to obtain the best organoleptic and chemical quality in extra virgin olive oils, two systems are suggested for the processing procedures. For olives of certain cultivars (Coratina) and for not-blackened or slightly blackened drupes yielding oils with a very high content of total polyphenols, it is most expedient to use the stone-mill together with a kneader system. But it is more suitable to utilize the hammercrusher together with a kneader system in processing olives (such as the Ogiiarola Salentina or Leccino cultivars) yielding normally “sweet” oils with a low content of total polyphenols.  相似文献   

9.
Quality characteristics of extra-virgin olive oils depend on several factors. In order to study the effects of genotype and growing location on olive oil quality, olives from cv. Coratina, Nocellara, Ogliarola, and Peranzana, picked in four locations of the Apulia region (Italy), were crushed by a three-phase system to produce mono-cultivar extra virgin olive oils that were analyzed for acidity, peroxide value, spectrophotometric indices, total phenolic content, phenolic profile and antioxidant activity. The experimental data concerning peroxide value, spectrophotometric indices, phenolic content and profile and antioxidant activity showed great variability among the cultivars grown in the same location and also among the oils produced with olives of the same cultivar but grown in different locations. For each cultivar, no significant differences were found among locations in terms of acidity and ΔK whereas peroxide value, K232, and K270 differ significantly among locations for both Ogliarola and Peranzana cv. Concerning the phenolic content of Ogliarola cv., no differences were highlighted between the locations whereas the phenolic contents of Peranzana significantly changed as a function of the place of growing. On the basis of these results, the statistical multivariate analysis did not allow the classification into homogeneous groups neither of the oils belonging to the same cultivar nor of those obtained from olives picked in the same location.  相似文献   

10.
The antioxidant properties of some single components and the total antioxidant activity of extra‐virgin olive oil have been evaluated by the oxygen radical absorbance capacity (ORAC) method. The total ORAC of the extra‐virgin olive oil was found to be positively correlated with the concentration of total polyphenols, which are important to the shelf life of the product. Among the single phenolic compounds studied, gallic acid showed a higher ORAC than caffeic acid and oleuropein, while among the derivates of oleuropein, hydroxytyrosol was found to be the most active compound among all the phenols studied. The total ORAC of commercial olive oils differed according to the concentration of total polyphenols. The total ORAC of extra‐virgin olive oil was constant during 1 year of storage in rational conditions, whereas it worsened dramatically in olive oil damaged by the lipase‐producing yeast Williopsis californica or by lipase from Pseudomonas spp. The study accomplished on the oily fraction of the fruits before harvesting demonstrated that the total ORAC of the oil of under‐ripe green olives is higher compared to that shown by mature fruits; therefore, through the choice of the harvesting time, it is possible to define also the future content of polyphenols of the oil. The total ORAC test, together with other analyses, can be considered as a qualitative parameter that can contribute to the expression of technological and health virtues of extra‐virgin olive oil.  相似文献   

11.
Olives were collected from various districts of Turkey (North and South Aegean sub-region, Bursa-Akhisar, South East Anatolia region) harvested over seven (2001–2007) seasons. The aim of this study was to characterize the chemical profiles of the oils derived from single variety Turkish olives including Ayvalik, Memecik, Gemlik, Erkence, Nizip Yaglik and Uslu. The olive oils were extracted by super press and three phase centrifugation from early harvest olives. Chosen quality indices included free fatty acid content (FFA), peroxide value (PV) and spectrophotometric characteristics in the ultraviolet (UV) region. According to the FFA results, 46% (11 out of 24 samples) were classified as extra virgin olive oils; whereas using the results of PV and UV, over 83% (over 19 of the 24 samples) had the extra virgin olive oil classification. Other measured parameters included oil stability (oxidative stability, chlorophyll pigment, pheophytin-α), cistrans fatty acid composition and color index. Oxidative stability among oils differed whereas the cis–trans fatty acid values were within the national and international averages. Through the application of two multivariate statistical methods, Principal component and hierarchical analyses, early harvest virgin olive oil samples were classified according to the geographical locations categorized in terms of fatty acid profiles. Such statistical clustering gave rise to defined groups. These data provide evidence of the variation in virgin olive oil quality, especially early harvest and cistrans isomers of fatty acid profiles from the diverse agronomic conditions in the olive growing regions of Turkey.  相似文献   

12.
We performed a survey on the yield, quality, and chemical characteristics of virgin olive oils from two olive varieties in Croatian Istria: Frantoio and Ascolana tenera, on Cherry leafroll virus‐infected and virus‐noninfected trees and on two harvest dates. Free acidity, peroxide value, specific spectrophotometric absorptions at 232 and 270 nm, fatty acid composition, total phenols, o‐diphenols, oil color, and pigments were determined. Infected olives had lower oil yield and maturity index versus healthy ones. Oils from infected fruits had significant lower value of K232 and K270 and very elevated total phenols content compared to those obtained from healthy olives. Infected Frantoio gave a lower content of o‐diphenols than the healthy ones, which is in contrast to infected Ascolana that had higher values. The aim of this study is to determine the chemical changes in virgin olive oils from healthy and infected trees related to virus influence. According to our knowledge, this is the first survey on the possible influence of viruses on olive fruits, oil yield, and virgin olive oil quality. Practical applications : There are only few papers which analyze the influence of viruses on crops (especially influence on wine quality) and their effects on yield or other agronomic parameters. This work evaluates for the first time the impact of Cherry leafroll virus on the quality of virgin olive oil obtained from Frantoio and A. tenera varieties in terms of basic parameters related to the hydrolitic and oxidative status, content in antioxidant compounds, and in pigments as well as in fatty acid composition.  相似文献   

13.
In this paper we evaluate the stability, purity and regulated quality composition of fatty acids and sterols (both physico‐chemical and sensory) of commercial Argentinean virgin olive oils in order to evaluate their acceptance on the world market. For this purpose, samples of the best known and most widely distributed oils in supermarkets located in Buenos Aires (Argentina) were acquired. After thoroughly analysing these samples, only 20% were considered to have an acceptable quality. However, some were excluded because of their high campesterol content, which could be an intrinsic characteristic of these oils. The most useful analytical parameter used to confirm authenticity was ECN‐42 R – ECN‐42 T, followed by wax content and 3.5 stigmastadienes. Only 24% of the extra‐virgin olive oil samples were classified as ‘extra‐virgin’ from the regulated quality viewpoint. The low oleic and high linolenic acid contents of the Argentinean virgin olive oils stand out when compared with European virgin olive oils. The oxidative stability values may be considered very low, indeed even lower than those obtained in Spanish virgin olive oils.  相似文献   

14.
The characterization of both volatiles and fatty acids of Tunisian olive varieties (Ouslati and Chemlali) is achieved in order to understand their correlation with the aroma accumulation via the lipoxygenase (LOX) pathway. The main identified volatiles in both crushed pulps and crushed stones are hexanal, E‐(2)‐hexenal, (Z)‐3‐hexen‐1‐ol, 1‐hexanol, and hexyl acetate. With regard to their fatty acid composition, results show that both de‐stoned (DOO) and conventional (COO) olive oils contain mainly unsaturated fatty acids. The results also show that oleic acid (C18:1) is the main fatty acid in both DOO and COO. Meanwhile, linoleic acid (C18:2) is present in a relatively higher percentage (5.2% and 19.8%, respectively, for Ouslati and Chemlali DOI) than linolenic fatty acid (C18:3) (<2%). The analysis of volatiles shows that more than 80% of total LOX‐compounds from both crushed pulps and crushed stones have linolenic acid as synthesis precursor despite its lower level (2%). Moreover, the contribution of olive parts in generating aroma is much higher in crushed pulps (more than 80%) than in crushed stones, which explains the fact that DOO, extracted from crushed pulps, contains the dominant amount of volatiles. Therefore, the obtained results promote both the consumption and the marketing of DOO. Practical Applications: The aroma and the organoleptic properties of olive oil are strictly correlated with both the olives quality and the extraction techniques used. Many technologies are developed to extract olive oil with highest quality. De‐stoned olive oil extraction process is one of these technical procedures. In the present work, the characterization of volatiles in pulp and stone separately provides important information about the contribution of olive constitutive parts on the accumulation of olive oil aroma during the oil extraction process.  相似文献   

15.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

16.
Olive ripening, climate conditions, geographic area, and cultivar may influence the composition and quality of olive oils. This study aims to identify the optimal harvesting period for qualitative production of three cultivars grown in Calabria. The obtained results show that all the olive oils produced in October are classified as extra virgin, and then their quality decreases gradually, in particular in Grossa di Gerace olives, grown in a typical hot‐dry area. Oleic acid content in the oil is related to the temperature exposition during fruit growth. Considering oil yield and quality, the optimal harvesting times are identified in the first part of the month of October (142–158 days after full bloom) for Grossa di Gerace olive and in the second and last week of October (142–165 days after full bloom) for Ottobratica and Sinopolese. Practical Applications: This study investigates with a holistic approach the development and maturation of drupes and the quality of oils obtained at two harvesting times. The strong correlation between olive ripening index and the other studied parameters prove that it is a valid index for olive growers to identify the optimal harvesting period for the three Calabrian olive cultivars. To obtain high mechanical harvest efficacy, this study suggests the use of trunk shakers to Grossa di Gerace olives and mechanical beaters to Ottobratica and Sinopolese.  相似文献   

17.
The time of exposure of olive pastes to air contact (TEOPAC) during malaxation was studied as a processing parameter that could be used to control endogenous oxidoreductases, such as polyphenoloxidase, peroxidase, and lipoxygenase, which affect virgin olive oil quality. Phenolic and volatile compounds were analyzed in the oils obtained using progressive TEOPAC at three ripening stages of olives. Multivariate statistical analysis was applied to the raw data. The phenolic concentration of virgin olive oil progressively decreased with increasing IEOPAC. On the contrary, a positive relationship was found with the concentration of several volatile compounds responsible for virgin olive oil aroma. The effect of TEOPAC, however, was strictly related to fruit ripening.  相似文献   

18.
Table olive processing produces defective fruits and the conditioning operations give rise to solid by‐products which are processed to obtain oil. In this study, the most relevant characteristics of crude oils extracted from table olive by‐products were high average acidity values (4.5%, green olives; 8.1%, ripe olives), ECN42 values of 0.34 (green olives) and 0.10 (ripe olives), while 2‐mono‐palmitin averaged 0.92%. The overall content of sterols was 2257 mg/kg (green olives) and 1746 mg/kg (ripe olives), while the concentration of cholesterol was 36 mg/kg (green olives) and 19 mg/kg (ripe olives). The effect of refining was mainly reflected by a decrease in acidity and sterols. Although most characteristics were in agreement with the established regulation for olive oil, the overall trans fatty acid content, the low apparent β‐sitosterol content, and the relatively high cholesterol content prevented their inclusion into classes of crude or refined lampante or pomace olive oils, not even into the vegetable oil category. Therefore, the oils analyzed should be considered for non‐edible purposes. The physicochemical characteristics used for chemometric discrimination permitted discrimination among types of oils (crude, 100%; physically refined, 90%; chemically refined, 100%), elaboration styles (green and ripe olives, 100%) and cultivars (Gordal, Manzanilla, Hojiblanca and Cacereña, 100%), with the sterol composition being the most useful parameter for discrimination.  相似文献   

19.
A total of 287 olive lots and 161 olive oil samples were analyzed for fat content, moisture and free acidity, using a Fourier transform near‐infrared (FT‐NIR) instrument located in an industrial mill. Samples having a wide range of both reference values and olive lot sizes (from <0.5 to >4 t) were collected at three industrial mill plants, located in the same Italian region, which utilize different technological equipment for virgin olive oil production. Olive paste spectra were acquired in diffuse reflectance, while oil samples were measured in transmission. Calibration models for oil content and moisture of olives as well as free acidity of virgin olive oils were developed using partial least squares (PLS) regression, first derivative and straight line subtraction. Results of calibration and validation of the PLS models selected were good. The PLS results indicate good similarity between data obtained from FT‐NIR and reference laboratory methods, allowing a rapid and less expensive screening analysis. Unfortunately, the correlation between the oil yield values recorded for all olive lots at the industrial mills and the oil content predicted by FT‐NIR was not satisfactory (R2 = 0.605).  相似文献   

20.
The aim of this work was to study, under different conditions, degradation of secoiridoids during extraction of extra virgin olive oil by following the effect of ascorbic and citric acid addition. Their effect was evaluated on oil obtained from both damaged olives and undamaged fresh olives. Addition of enzyme inhibitors to damaged olives during olive milling allowed us to obtain oil with a higher phenolic compound content. Conversely, addition of the same inhibitors to undamaged fresh olives, during oil milling, resulted in no significant improvement in the phenolic compound content of oil. A high presence of PPO was thus indirectly confirmed, as damaged olives were only found to be sensitive to action of inhibitors. Ascorbic acid was found to be more effective than citric acid in preserving phenolic compounds of oil. Trials on undamaged fresh olives confirmed occurrence of hydrolytic transformation phenomena for secoiridoids during extra virgin olive oil production process. In particular, the quantitatively most representative component for Frantoio cultivar was found to be 3,4‐DHPEA‐EDA. This compound may be considered a direct marker for the degree of transformation of secoiridoids during production process. Practical applications: The processing of undamaged olives resulted in the extraction of extra virgin olive oil with a higher phenol content. It could be indirectly inferred that a reduced activity of PPO caused a low secoiridoid degradation both before and after malaxation. Lightly scratched, overripe olives could be used in those markets where the addition of oxidation‐inhibiting substances is allowed. Using inhibitors can be suggested for olive washing step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号