首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

2.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and 1‐vinyl‐2‐pyrrolidone (VP) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depressions of the melting temperatures of PVA segments in IPNs were observed with increasing VP content via the DSC. The DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated using TGA and appeared at near 270°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1844–1847, 2002  相似文献   

3.
Interpenetrating polymer networks (IPNs) based on poly(propylene glycol) (PPG) and poly(acrylic acid) (PAAc) were prepared by UV irradiation and characterized using fourier transform infrared (FTIR), differential scanning calorimetry (DSC), dielectric analysis (DEA), and thermogaravimetry (TGA). The glass transition temperatures (Tgs) of these IPNs exhibited a relatively higher temperature with an increased PAAc content. The decomposition temperature of PAAc is lower than that of PPG. PAAc affects the thermal stability of IPN more than PPG. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2570–2574, 2003  相似文献   

4.
Interpenetrating polymer networks (IPNs) constructed with poly(vinyl alcohol) (PVA) and poly(diallyldimethyl ammonium chloride) (PDADMAC) using a sequential IPN method were prepared. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), dielectric analysis (DEA), and thermogravimtric analysis (TGA). Decreases in the melting temperature of PVA segments in IPNs were observed with increasing PDADMAC content using DSC. DEA was employed to ascertain glass transition temperature of IPNs. The thermal decomposition of IPNs was investigated using TGA, and thermal decomposition of IPNs could be decelerated by changing PVA content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1346–1349, 2003  相似文献   

5.
Blends of two biodegradable semicrystalline polymers, poly(p‐dioxanone) (PPDO) and poly(vinyl alcohol) (PVA) were prepared with different compositions. The thermal stability, phase morphology and thermal behavior of the blends were studied by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). From the TGA data, it can be seen that the addition of PVA improves the thermal stability of PPDO. DSC analysis showed that the glass transition temperature (Tg) and the melting temperature (Tm) of PPDO in the blends were nearly constant and equal to the values for neat PPDO, thus suggesting that PPDO and PVA are immiscible. It was found from the SEM images that the blends were phase‐separated, which was consistent with the DSC results. Additionally, non‐isothermal crystallization under controlled cooling rates was explored, and the Ozawa theory was employed to describe the non‐isothermal crystallization kinetics. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Interpenetrating polymer network (IPN) hydrogels composed of polyallylamine and chitosan were synthesized by radical polymerization using 2,2‐dimethyl‐2‐ phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The IPNs thus obtained were characterized by using Fourier transform infrared (FT‐IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperatures of IPNs were observed with increasing chitosan content by DSC. DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated by TGA and appeared at near 270 °C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1956–1960, 2002  相似文献   

7.
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Interpenetrating polymer networks (IPNs) of polydimethylsiloxane (PDMS) and poly(2‐hydroxyethyl methacrylate) (PHEMA) were prepared by sequential method. The dynamic mechanical parameters of obtained IPNs and their variations with the structural composition were evaluated. The results for the IPNs were compared with corresponding physically blended systems. The tensile properties and damping factor (tan δ) were assessed by stress–strain measurement and dynamic mechanical thermal analysis (DMTA), respectively. The glass–rubber transition temperature (Tg) was assessed by DMTA and differential scanning calorimetry (DSC). The results showed higher tensile strength and elongation at break for IPNs than those for physical blends. The shifts of Tg for that two components that make up the IPNs were greater than those for corresponding blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3480–3485, 2002  相似文献   

9.
Interpenetrating polymer networks (IPNs) composed of silk sericin (SS) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared simultaneously. The properties of the resultant IPN hydrogels were characterized by differential scanning calorimetry and SEM as well as their swelling behavior at various temperatures and pH values. The single glass transition temperature (Tg) presented in the IPN thermograms indicated that SS and PNIPAAm form a miscible pair. The swollen morphology of the IPNs observed by SEM demonstrated that water channels (pores present in SEM micrographs) were distributed homogeneously through out the network membranes. The swelling ratio of the IPNs depended significantly on the composition, temperature and pH of the buffer solutions. The dynamic transport of water into the IPN membrane was analyzed based on the Fickian equation. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
Poly(vinyl alcohol) (PVA) can be dissolved in a nonaqueous medium in the presence of catalytic concentration of ethyl nitrate dimethyl sulfoxide, C2H5ONO2·DMSO. From the PVA solution, poly(vinyl propionate), PVPR was prepared by the homogeneous esterification of PVA with propionic acid. The ester thus formed contained some unconverted hydroxyl group. The formation of the ester was confirmed by the IR and 1H‐NMR spectra. The molecular weight of the ester was determined by GPC and intrinsic viscosity (η) was determined by viscometric method. Glass transition temperature, Tg, was obtained from differential scanning calorimetric (DSC) analysis. Thermal stabilities of the ester were checked by thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) analysis. The efficiency of the ester as a flow improver of crude oil was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5675–5679, 2006  相似文献   

11.
A thermal analysis study of blends of semicrystalline poly(vinyl alcohol) (PVA) with a pharmaceutical substance, buflomedil pyridoxal phosphate (BPP) is presented. Temperature‐modulated DSC (TMDSC) was used to determine the Tg as well as the crystallinity of blends with various polymer to drug ratios, for different annealing procedures. Positive deviations from a simple expression for the composition dependence of the glass transition of the blend were found. This result, together with the increased thermal stability of PVA–BPP blends, evidenced by TGA analysis, indicates the existence of specific interactions between the polar groups of the two components. The incorporation of dispersed BPP in the PVA matrix results in a composition‐dependent lowering of the polymer's Tm and degree of crystallinity. In addition, we found that, while melting of pure PVA is predominantly reversing, its melting in the blends acquires an increasingly higher nonreversing component with increasing BPP content in the blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1151–1156, 2004  相似文献   

12.
Poly(vinyl alcohol) (PVA) can be dissolved in a nonaqueous medium in the presence of catalytic concentration of ethyl nitrate dimethyl sulfoxide, C2H5ONO2 · DMSO (EN · DMSO). From the PVA solution, poly(vinyl butyral) (PVBu) was prepared by acid‐catalyzed homogeneous acetalization of PVA with butyraldehyde. The formation of PVBu was confirmed by IR and 1H‐NMR spectra. The degree of acetalization of PVBu was found to be 95 mol %, which was verified by 1H‐NMR data and acetylation method. The molecular mass of the polymer was determined by GPC method. The glass transition temperature, Tg, was measured from differential scanning calorimetric (DSC) thermograms. Thermal stabilities were checked by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). The acetal decomposed in three stages. The corresponding initial decomposition temperatures were found to be 285, 390, and above 500°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1182–1186, 2001  相似文献   

13.
Poly(vinyl alcohol) (PVA) and poly(N-vinyl pyrrolidone) (PVP) composite hydrogel with interpenetrating polymer networks (IPNs) was prepared by in situ polymerization and compared with pure PVA hydrogel. The prepared IPN hydrogel was characterized by infrared spectroscopy (IR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The mechanical property and cell culture were also tested. The results show that PVP can chemically bond with PVA and form uniform blend hydrogel. The content of PVP can affect the structure, crystallinity, glass transition temperature (Tg), and mechanical property of the hydrogel. The Tg of the PVA hydrogel is 2.7°C while the Tg of the IPN hydrogel is −37°C. The IPN hydrogel has lower glass transition temperature, corresponding to better elastic properties, and has better mechanical performance on stretch and compression than PVA hydrogel. The crystallinity (Xc) of PVA hydrogel and IPN hydrogel is 65.3 and 26.3%, respectively. The DMA curves and XPS analysis suggest that PVA and PVP are well miscible on a molecular level in the IPN hydrogel. The cell proliferation trend demonstrates that the addition of PVP has a positive influence on the cell growth and the IPN hydrogel may be used as a promising biomaterial for artificial cartilage substitute. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Films of polymer blends having various contents of poly(vinyl alcohol) (PVA) and polyacrylamide (PAM) were prepared by the solution casting technique using water as a common solvent. The thermal, mechanical and morphological properties of these blends before and after exposure to various doses of gamma radiation, up to 100 kGy, have been investigated. The visual observation and reflectance measurements show that PVA/PAM blends are miscible over a wide range of composition. Moreover, the differential scanning calorimetry (DSC) thermograms show only a single glass transition temperature (Tg), but not those of PVA or PAM homopolymers, giving further support to the complete compatibility of such blends. The Tg of PVA/PAM blends decreases with increasing content of PAM but increases after exposure to gamma irradiation, indicating the occurrence of crosslinking. These findings were demonstrated by the scanning electron micrographs of the fracture surfaces and the tensile mechanical properties. The TGA thermograms and percentage mass loss at different decomposition temperatures show that unirradiated PVA homopolymer possesses higher thermal stability than PAM homopolymer and their blends within the heating temperature range investigated, up to 250 °C. An opposite trend is observed within the temperature range 300–500 °C. In general, the thermal stability of homopolymers or their blends improves slighly after exposure to an irradiation dose of 100 kGy. These findings are clearly confirmed by the calculated activation energies of the thermal decomposition reaction of the homopolymers and the blends. © 2003 Society of Chemical Industry  相似文献   

15.
Five kinds of polyepichlorohydrin (PECH) of different molecular weights were synthesized and characterized by gel permeation chromatography (GPC). Mechanical blending was used to mix PECH and poly(vinyl chloride) (PVC) together. The blends of different PVC/PECH ratios were characterized by thermogravimetric analysis (TGA), tensile tests, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). TGA results show the thermal stability of PVC/PECH blends is desirable. Tensile tests indicate elongation at break is raised by increasing both the amount and the molecular weight of PECH. DSC is used to determine the glass transition temperature of PECH, and a quite low Tg is obtained. DMA results indicate that PECH has a perfect compatibility with PVC, when PECH concentration is below 20 wt %. There is only one peak in each tan δ curve, and the corresponding Tg decreases as PECH amount increases. However, above 20 wt %, phase separation takes place. The molecular weight of PECH also has a great influence on the glass transition temperature of the blends. This study shows that PECH is an excellent plasticizer for PVC, and one can tailor the glass transition temperature and tensile properties by changing the amount and the molecular weight of PECH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Grafting of poly(ε‐caprolactone) (PCL) and poly(lactide) (PLA) chains on poly(vinyl alcohol) backbone (PVA degree of hydrolysis 99%) was investigated using MgH2 environmental catalyst and melt‐grown ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and L ‐lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of MgH2 as catalyst as well as yield of reaction were discussed according to various PVA/CL/MgH2 and PVA/LA/MgH2 ratio. PVA‐g‐PCL and PVA‐g‐PLA were characterized by 1H‐ and 13C‐NMR, DSC, SEC, IR. For graft copolymers easily soluble in tetrahydrofuran (THF) or chloroform, wettability and surface energy of cast film varied in relation with the length and number of hydrophobic chains. Aqueous solution of micelle‐like particles was realized by dissolution in THF then addition of water. Critical micelle concentration (CMC) decreased with hydrophobic chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Temperature‐sensitive poly(N‐isopropyl acrylamide) (PNIPAAm) was synthesized both in the presence and absence of nanomaterials like allyl mercaptan decorated gold nanoparticle and allyalcohol‐conjugated multiwall carbon nanotube. The influence of the nanomaterials on the structure–property relationship of PNIPAAm was analyzed and critically compared to the pristine PNIPAAm. During the in situ polymerization, the nanosphere shape of Au nanoparticle was converted into Au nanorod shape, which was confirmed through UV–vis spectroscopy. The glass transition temperature (Tg) of polymer/nanocomposites was greater than that of the pristine polymer. Thermogravimetric analysis declared that the polymer/nanocomposites exhibited higher thermal stability than the homopolymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Hyperbranched poly(silyl ester)s were synthesized via the A2 + B4 route by the polycondensation reaction. The solid poly(silyl ester) was obtained by the reaction of di‐tert‐butyl adipate and 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The oligomers with tert‐butyl terminal groups were obtained via the A2 + B2 route by the reaction of 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl‐trisi1oxane with excess amount of di‐tert‐butyl adipate. The viscous fluid and soft solid poly(silyl ester)s were obtained by the reaction of the oligomers as big monomers with 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The polymers were characterized by 1H NMR, IR, and UV spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The 1H NMR and IR analysis proved the existence of the branched structures in the polymers. The glass transition temperatures (Tg's) of the viscous fluid and soft solid polymers were below room temperature. The Tg of the solid poly(silyl ester) was not found below room temperature but a temperature for the transition in the liquid crystalline phase was found at 42°C. Thermal decomposition of the soft solid and solid poly(silyl ester)s started at about 130°C and for the others it started at about 200°C. The obtained hyperbranched polymers did not decompose completely at 700°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3430–3436, 2006  相似文献   

19.
The molecular interactions between the component networks in poly(methacrylic acid)/poly(N‐isopropyl acrylamide) (PMAA/PNIPAAm) interpenetrating polymer networks (IPNs) were investigated using attenuated total reflectance (ATR)‐Fourier transform IR (FTIR) spectroscopy. Hydrogen‐bond formation was noted between the carboxyl groups of PMAA and the amide groups of PNIPAAm. The ATR‐FTIR results showed shifts in the carboxylic and amide groups, indicating the existence of hydrogen bonding between these two individual networks within the IPNs. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1077–1082, 2001  相似文献   

20.
Branched poly(butylene succinate) (PBS) copolymers were synthesized, from succinic acid (SA), 1,4‐butanediol (1,4‐BD), and 1,2‐octanediol (1,2‐OD) through a two‐step process containing esterification and polycondensation, with different mole fractions of 1,2‐OD segments. The branched PBS copolymers were characterized with 1H‐NMR, differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), thermogravimetric analysis (TGA), dynamic rheological testing, and tensile properties analysis. The results of DSC and WAXD show that, with the increasing of the 1,2‐OD segments content, the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), and the degree of crystallinity (Xc) decrease. While the crystal structure of PBS does not change by introducing 1,2‐OD segments. The results of TGA and dynamic rheological testing indicate that the thermal stability of neat PBS is improved with the addition of 1,2‐OD segments. The incorporation of 1,2‐OD segments has some effects on the rheological properties of PBS, such as complex viscosities (|η*|), storage modulus (G′), and loss modulus (G″). Tensile testing demonstrates that the elongation at break is improved significantly with increasing 1,2‐OD segments content, but without a notable decrease of tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号