首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(acrylamide‐co‐4‐vinylpyridine) hydrogels having varied acrylamide/4‐vinylpyridine content and different crosslink ratios of N,N′‐methylene‐bisacrylamide was prepared by using solution polymerization. The prepared hydrogel polymers were characterized by their elemental analysis, infrared spectroscopy, and equilibrium water content. The polymers were investigated toward metal ion uptake of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymers were more sensitive to Cu(II) and Ni(II) and the order of metal ion binding was Ni(II), Cu(II) > Zn(II) > Co(II) > Mn(II). Metal ion uptake by the polymers was reduced as the pH of the medium decreased. Recycling of the resins resulted in high recovery of the metal ions from their aqueous solutions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2522–2526, 2003  相似文献   

2.
Gelatin‐based hydrogels were synthesized and characterized for use as Cu2+‐ion sorbents. Gelatin was crosslinked in the presence of two different monomers, that is, acrylamide (AAm) and/or 2‐hydroxypropyl methacrylate, with N,N‐methylenebisacrylamide, ammonium persulfate, and sodium bicarbonate. The as‐prepared hydrogels were further characterized by scanning electron microscopy, Fourier transform spectroscopy, and the study of their swelling behavior as a function of temperature, time, and pH to evaluate their structure–property relationships. The hydrogels were observed to be good sorbents of Cu2+, and a maximum uptake of 84.8% was observed within 2 h at 37°C and with 10 ppm of the Cu2+‐ion solution for the gelatin and polyacrylamide hydrogel, which also exhibited the maximum retention capacity at 14.9 mg/g after four feeds. All of the experimental data exhibited good matches with the Langmuir isotherm and followed pseudo‐second‐order kinetics. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Terpolymers based on N‐isopropylacrylamide, sodium 2‐acrylamido‐2‐methyl‐propanesulfonate, and Ntert‐butylacrylamide were synthesized by free‐radical copolymerization with 2,2′‐azobisisobutyronitrile as an initiator. The lower critical solution temperatures (LCSTs) of the linear polymer aqueous solutions were determined by the measurement of the transmittance on UV at different temperatures. The influence of the polymer concentration, polymer composition, and ionic strength on the LCSTs of the linear polymers was investigated. The LCST decreased with increases in the hydrophobic monomer Ntert‐butylacrylamide, polymer concentration, and ionic strength. The phase transition became sharp when the polymer concentration and ionic strength increased. Meanwhile, the crosslinked hydrogels were prepared with the same recipe used for the linear terpolymers, but a crosslinker was added to the reaction system. The swelling ratios of the hydrogels at various temperatures and salt solutions were determined. The hydrogels possessed both high swelling ratios and thermosensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Poly(2‐aminobenzoic acid) and poly(3‐aminobenzoic acid) were synthesized by chemical polymerization of the respective monomers with aqueous 1M hydrochloric acid and 0.49M sodium hydroxide, using ammonium persulfate as an oxidizing agent. In addition, polymerization in an acid medium was carried out in the presence of metal ions, such as Cu(II), Ni(II), and Co(II). Poly(2‐aminobenzoic acid‐co‐aniline) and poly(3‐aminobenzoic acid‐co‐aniline) were synthesized by chemical copolymerization of aniline with 2‐ and 3‐aminobenzoic acids, respectively, in aqueous 1M hydrochloric acid. The copolymers were synthesized at several mole fractions of aniline in the feed and characterized by UV–visible and FTIR spectroscopy, the thermal stability, and the electrical conductivity. Metal ions, such as Cu(II), Ni(II), and Co(II), were incorporated into homo‐ and copolymers by the batch method. The percentage of metal ions in the polymers was higher in the copolymers than in the homopolymers. The thermal stability of the copolymers increased as the feed mole fraction of aniline decreased and varied with the incorporation of metal ions in the polymers. The electrical conductivity of the homo‐ and copolymers was measured, which ranged between 10?3 and 10?10 S cm?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2641–2648, 2003  相似文献   

5.
Stimuli‐sensitive polymers are a type of smart polymers having the capability to change their configuration or properties under adequate stimuli as heat, pH, magnetic field, mechanical strength, among other. The aim of this work was to synthesize nanostructured polymers with antibacterial properties capable to change their retention properties of divalent metal ions by external stimuli (pH and ionic strength). For that, a polymerizable nanostructured crosslinker (PNC) based on silver nanoparticles (AgNPs) and acrylic acid was synthesized. Later, NPSS was synthesized by free‐radical polymerization, characterized by different analytical techniques and its retention properties of divalent ions (Cu2+, Fe2+, Mn2+, and Zn2+) were studied at different pHs and ionic strengths (5.0, 7.0, and 9.0; and 0.0, 0.5, and 1.5% NaCl, respectively). It was evidenced that AgNPs can be synthesized using acrylic acid as stabilizing agent, and later, be used for synthesis of NPSS by free‐radical polymerization. For NPSS, metal ion retention decreases as pH is increased; in addition, results suggest that the electrostatic interaction is not the only determining factor in the retention of ions. Other possible factors which would be affecting the retention are: water flow by swelling capacity and water flow by osmotic stress resulting of high salt concentration. NPSS showed antimicrobial activity against Escherichia coli and Staphylococcus aureus which was enhanced by incorporation of PNC based on AgNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46001.  相似文献   

6.
A two‐step initiation and polymerization process was developed for the preparation of two series of hydrogel–cellulose composites with distinctively different morphologies and swelling behaviors. Hydroentangled cotton cellulose fibers were optimally initiated in 20 mM aqueous ammonium cerium(IV) nitrate for 15 min and then polymerized in aqueous solutions of N‐isopropylacrylamide (NIPAAm) monomer and N,N′‐methylene bisacrylamide (BisA) crosslinker. The extents of hydrogels on the cellulose solids could be controlled by variations in the concentrations of the monomer and crosslinker as well as the NIPAAm/BisA solution‐to‐solid ratios. The two series of hydrogel–cellulose composites formed were hydrogel‐covered/filled cellulose (I) and cellulose‐reinforced hydrogel (II) composites. Series I composites were synthesized with NIPAAm/BisA solutions below the liquid saturation level of the cellulose; this led to pore structures (size and porosity) that depended on both the extent and swelling of the grafted hydrogels. Series II composites were polymerized in the presence of excessive NIPAAm/BisA solutions to produce cellulose solids completely encapsulated in the hydrogels. All the cellulose‐supported hydrogels exhibited lower extents of phase transition over a wider temperature range (28–40°C) than the free poly(N‐isopropylacrylamide) hydrogels (32°C). These findings demonstrate that hydrogels can be used to control the pore structure of cellulose and can be supported with cellulose fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 999–1006, 2003  相似文献   

7.
A series of functional copolymer hydrogels composed of carboxymethyl cellulose (CMC) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) were synthesized using γ‐radiations‐induced copolymerization and crosslinking. Preparation conditions were optimized, and the swelling characteristics were investigated. The ability of the prepared hydrogels to recover some toxic metal ions from their aqueous solutions was studied. The prepared hydrogel showed a great capability to recover metal ions such as: Mn+2, Co+2, Cu+2, and Fe+3 from their solutions. The data revealed that the chelating ability of the prepared hydrogels is mainly dependent on their internal composition, in addition to the physical properties of the metal ion solution such as pH and metal ion concentration. The data show that the chelating ability of the prepared hydrogels increases by increasing the AMPS content in the hydrogel as well as the increment in the pH of the solution and the metal ion concentration. The prepared CMC/AMPS copolymer hydrogels are chemically stable enough to be reused for at least five times with the same efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
BACKGROUND: In this study, poly[(N‐vinylimidazole)‐co‐(maleic acid)] (poly(VIm/MA)) hydrogels were prepared by γ‐irradiation of ternary mixtures of N‐vinylimidazole–maleic acid–water using a 60Co γ‐source. Spectroscopic and thermal analyses of these hydrogels as a function of protonation showed that the results are consistent with the existence of an H‐bridged complex when the imidazole rings are partially protonated. Finally, the efficiency and binding trends of Cu2+, Co2+, Cd2+ and Pb2+ ions with both protonated and unprotonated poly(VIm/MA) hydrogels were determined. RESULTS: Gelation of 90% was reached at around 180 kGy dose at the end of irradiation. The poly(VIm/MA) hydrogels synthesized were further protonated in HCl solutions with different concentrations. Hydrogels originally showed 450% volumetric swelling; this ratio reached 1900% after protonation at pH = 5.0. Fourier transform infrared spectral changes in the +N? H stretching region (3200–3600 and 1173 cm?1) and the ring mode deformation at 915 cm?1 are consistent with the formation of an H‐bridged complex between the protonated and unprotonated imidazole rings upon partial protonation. Similar changes were obtained from NMR spectra of both the protonated and unprotonated forms of the hydrogels. CONCLUSION: Protonated and unprotonated hydrogels have been used in heavy metal ion adsorption studies for environmental purposes. Adsorption decreased with decreasing pH value due to the protonation of the VIm ring. The adsorption of Me2+ ions decreased in the order Cu2+ > Co2+ > Cd2+ > Pb2+, which is related to the complexation stability as well as the ionic radius of the metal ions. These results show that P(VIm/MA) hydrogels can be used efficiently to remove heavy metal ions from aqueous solutions. However, the protonated form is a bad choice for heavy metal ion adsorption due to electrostatic repulsion forces; it can nevertheless be assumed to be a good choice for anion adsorption from environmental waste water systems. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
The chelation behavior of poly(2‐hydroxy‐4‐acryloyloxybenzophenone) [poly(2H4ABP) or polymer I ] obtained through the free‐radical polymerization of 2‐hydroxy‐4‐acryloyloxybenzophenone monomer and for crosslinked polymers prepared from the monomer and known amounts of the crosslinker divinylbenzene (DVB) [4 mol % of DVB for polymer II, 8 mol % of DVB for polymer III, and 16 mol 16% of DVB for polymer IV ] toward the divalent metal ions Cu2+, Ni2+, Zn2+, and Pb2+ in aqueous solution was studied by a batch equilibration technique as a function of contact time and pH. The effect of the crosslinker, DVB, was also studied. The metal‐ion uptake of the polymers was determined with atomic absorption spectroscopy, and the highest uptake was achieved at pH 7.0 for polymers I, II, III, and IV. The selectivity and binding capacity of the resins toward the investigated divalent metal ions are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
The water‐insoluble resin poly(2‐acrylamido‐2‐methyl‐1‐propanosulfonic acid‐co‐4‐vinyl pyridine), through a radical polymerization solution, was synthesized with ammonium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinking reagent. The metal‐ion‐retention properties were studied by batch and column equilibrium procedures for the following metal ions: Hg(II), Cu(II), Cd(II), Zn(II), Pb(II), and Cr(III). These properties were investigated under competitive and noncompetitive conditions. The effects of the pH, maximum retention capacity, and regeneration capacity were studied. The resin showed a high retention ability for Hg(II) ions at pH 2.0. The retention of Hg(II) ions from a mixture of ions was greater than 90%. The resin showed a high selectivity for Hg(II) with respect to other metal ions. The Hg(II)‐loaded resin was able to be recovered with 4M HClO4. The retention capacity was kept after four cycles of adsorption and desorption. The retention properties for Hg(II) were very similar with the batch and column methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3556–3562, 2003  相似文献   

11.
Polyelectrolyte hydrogels were synthesized from N,N‐dimethylacrylamide, acrylamide, and itaconic acid with ammonium persulfate as a free‐radical initiator in the presence of methylene(bis)acrylamide as a crosslinker. The swelling behavior of the ionic poly(N,N‐dimethylacrylamide‐co‐acrylamide) hydrogels was investigated in pure water, in KSCN solutions with pHs 4 and 9, and in water–acetone mixtures according to the itaconic acid content in the hydrogel. The pulsatile swelling behavior of these hydrogels was studied both in water–acetone and in pH 2–9 buffer solutions. Although the equilibrium swelling ratio of the hydrogels with low concentrations of itaconic acid was almost not affected by changes in the temperature, the equilibrium swelling ratio of the hydrogels with high concentrations of itaconic acid increased in the temperature range of 20–50°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2140–2145, 2007  相似文献   

12.
We carried out the free‐radical copolymerization of N‐phenylmaleimide with acrylic acid and acrylamide with an equimolar feed monomer ratio. We carried out the synthesis of the copolymers in dioxane at 70°C with benzoyl peroxide as the initiator and a total monomer concentration of 2.5M. The copolymer compositions were obtained by elemental analysis and 1H‐NMR spectroscopy. The hydrophilic polymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymers were performed. Hydrophilic poly(N‐phenylmaleimide‐co‐acrylic acid) and poly(N‐phenylmaleimide‐co‐acrylamide) were used for the separation of a series of metal ions in the aqueous phase with the liquid‐phase polymer‐based retention method in the heterogeneous phase. The method is based on the retention of inorganic ions by the polymer in conjunction with membrane filtration and subsequent separation of low‐molecular‐mass species from the formed polymer/metal‐ion complex. The polymer could bind several metal ions, such as Cr(III), Co (II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) inorganic ions, in aqueous solution at pH values of 3, 5, and 7. The interaction of the inorganic ions with the hydrophilic polymer was determined as a function of pH and a filtration factor. Hydrophilic polymeric reagents with strong metal‐complexing properties were synthesized and used to separate those complexed from noncomplexed ions in the heterogeneous phase. The polymers exhibited a high retention capability at pH values of 5 and 7. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

13.
Poly(N‐vinyl‐2‐pyrrolidone) and poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) hydrogels were prepared by gamma irradiation for the removal of heavy metal ions (i.e., lead, copper, zinc, and cadmium) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L) and at different pH values (1–13). The observed affinity order in adsorption of these metal ions on the hydrogels was Zn(II) > Pb(II) > Cu(II) > Cd(II) under competitive conditions. The optimal pH range for the heavy metal ions was from 7 to 9. The adsorption of the heavy metal ions decreased with increasing temperature in both water and synthetic seawater conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2013–2018, 2003  相似文献   

14.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

15.
In this article, we report on the extraction of Sr(II) ions from aqueous solution with a series of poly(N‐vinyl imidazole)‐based hydrogels. The hydrogels were synthesized by the crosslinking of N‐vinyl imidazole with four different crosslinkers with γ rays as initiators. The well‐characterized hydrogels were used as Sr(II) sorbents. Sr(II) uptake was determined with a colorimetric method with Rose Bengal anionic dye. Scanning electron microscopy–energy‐dispersive spectroscopy analysis of the Sr(II)‐loaded polymers was recorded to ascertain the uptake of Sr(II) ions. The experimental adsorption values were analyzed with the Freundlich and Temkin equations, and the kinetics of adsorption were investigated with a pseudo‐second‐order sorption kinetic model. The results show that the equilibrium data fit well in the Freundlich isotherm and followed a pseudo‐second‐order kinetic model. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

17.
Interpenetrating networks (IPNs) based on extracted cellulose and its derivatives such as hydroxypropyl cellulose (HPC), cyanoethylcellulose, hydroxyethylcellulose, hydrazinodeoxycellulose, cellulosephosphate with methacrylamide (MAAm), and N,N‐methylene bisacrylamide were synthesized at reaction conditions evaluated for optimum network yield as a function of irradiation dose, concentrations of monomer and crosslinker, and amount of water. These networks were used in sorption of Fe2+, Cu2+, and Cr6+ ions. The networks were further functionlized by means of partial hydrolysis with 0.5N NaOH and metal ion sorption studies were carried out. Appreciable amount of all the three ions was sorbed and partial functionalization of the hydrogels results in selectivity in ion sorption with enhanced affinity for Fe2+ ions and total rejection of Cr6+ ions. These results are of interest for the development of low‐cost technologies based on smart hydrogels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 667–671, 2002  相似文献   

18.
Thermosensitive networks based on hydroxypropyl cellulose and N‐isopropylacrylamide crosslinked with N,N‐methylene bisacrylamide were synthesized by a simultaneous gamma radiation technique. The network yield was optimized by the variation of reaction parameters such as the total radiation dose, concentration of crosslinker and monomer, and amount of water. The hydrogels had a biphasic structure and good mechanical strength, even in the fully swollen state, and could be synthesized in any shape and size. Volume transitions as a function of time and temperature were studied for these hydrogels in water, and the effects on swelling in different media such as 0.5N NaOH, 0.5N HCl, and 5% NaCl at the optimum time and temperature were also studied. The response of the hydrogels to these diverse changes in the swelling media was observed, and the volume transitions due to environmental changes in the hydrogels were not sharp and discontinuous as a maximum volume collapse occurred at a temperature higher than the reported lower critical solution temperature of 32.5°C for N‐isopropylacrylamide. These hydrogels were environmentally sensitive and responded to changes in their thermal and ionic environment and have potential applications in diverse fields such as drug delivery, enzyme technology, and environmental management. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 479–488, 2004  相似文献   

19.
A novel copolymer hydrogel, poly(acrylamide‐co‐diallyl dimethyl ammonium chloride), was prepared by the radical copolymerization of acrylamide and diallyl dimethyl ammonium chloride in an ionic liquid (IL)–water binary system in the presence of the crosslinker N,N′‐methylene bisacrylamide. The equilibrium swelling ratios of the hydrogels synthesized in the IL–water binary system increased with the content of IL and were remarkably higher than that of the gel synthesized in water. Differential scanning calorimetry measurements showed that the glass‐transition temperatures of the dry hydrogels that were synthesized in the IL–water binary system were remarkably lower than that of the gel synthesized in pure water. The mechanical properties of the gels synthesized in both water and the IL–water binary system were characterized with a universal material‐testing machine. The results show that fracture toughness of the hydrogels was improved when they were synthesized in the IL–water binary system. The gel shrank under a direct‐current electric field. The response rates of the gels that were synthesized with the IL–water binary system were faster than that of the gel synthesized in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
BACKGROUND: Stimuli‐responsive hydrogels are typically obtained from non‐biodegradable monomers. The use of biodegradable crosslinkers can overcome this limitation. In this context, the main aim of this work was to use modified polycaprolactone as a crosslinker in the preparation of pH‐responsive hydrogels based on N‐isopropylacrylamide and methacrylic acid to give poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(N‐iPAAm‐co‐MAA)). RESULTS: Poly(caprolactone) dimethacrylate macromonomer was synthesized and successfully employed as crosslinker with various ratios in the synthesis of well‐known pH‐responsive hydrogels of P(N‐iPAAm‐co‐MAA). The swelling properties of these degradable hydrogels were investigated. They practically do not swell at pH = 2, but exhibit a very high swelling capacity in distilled water and in solutions of pH = 7. In addition, degradation studies at pH = 12 showed that the hydrolysis of the ester groups in the polycaprolactone chains produces, after a relatively short time, the total solubilization of the polymer chains. CONCLUSION: The hydrogels under study have certain characteristics that could make them good candidates for use as matrices in controlled drug delivery. On the one hand, they do not swell in acid pH solution (stomach conditions) but they swell extensively at neutral pH. On the other hand, they became rapidly water soluble following degradation. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号