首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
基于计算流体力学,对离心泵叶轮内部流场进行了数值模拟。采用有限体积中心格式、时间推进解法以及N-S方程计算。得到了叶轮压力分布等值线、叶轮相对速度矢量以及二次流分布,并进行详尽的分析,揭示了叶轮内部流动情况,为优化叶轮设计提供了理论依据和技术保障。  相似文献   

2.
为了解多级离心泵首级叶轮内部流动特性,基于N-S方程和标准κ-ε湍流模型对三长三短复合叶轮和四长四短复合叶轮内部流动进行了数值模拟,获得了两种叶轮在额定工况及非额定工况下的内部流场分布并进行了分析。结果显示,四长四短叶轮可改善叶轮内部流场、提高叶轮吸力面压力,进一步阻止小流量下的脱流现象,有效提高了整个泵的扬程和效率及高效区。  相似文献   

3.
为分析磁力驱动离心泵的内部流动特性,基于SST k-ω湍流模型,应用计算流体力学(CFD)软件对磁力驱动离心泵内部全流场进行数值计算研究,得到了磁力驱动离心泵轴截面、叶轮流道、压水室流道和冷却循环流道等主要过流部件流道内的流场分布规律。研究表明:小流量工况下,磁力驱动离心泵内部流动较为紊乱,随着流量的增大,泵内部流动逐渐平稳,回流孔出口处的低速区域面积及冷却循环流道内的压力值逐渐减小;介质在经过导流孔、隔离套间隙和回流孔流入叶轮进口处的过程中,压力逐步降低,且在回流孔靠近叶轮进口区域易形成低压区。  相似文献   

4.
基于流动控制技术,以某型号的低比转速离心式不锈钢冲压叶轮作为研究模型,采用数值模拟和试验研究了叶片不同开缝位置(r/R)对叶轮内部能量、湍流动能及耗散率分布的影响,同时制作了开缝叶片离心泵样机模型,并进行了试验验证,分析了叶片上开缝的相对位置对离心泵的扬程及效率等外特性的影响,比较了叶片有、无开缝的性能变化。研究结果表明:叶片开缝的位置对叶轮内流体能量的分布以及获得的总压能影响较大;开缝的存在会引起离心泵内部流场的变化,在开缝的地方会产生湍动能及耗散率的突变;不同的开缝相对位置对离心泵性能影响不同,开缝的相对位置为0.875,与没有开缝叶片的离心泵相比,效率提高了1.52%,拓宽了离心泵的高效区间,在大流量时,开缝存在起到了抑制分离的产生,提高了离心泵的扬程,改善了叶轮流道中流体的流动状态。  相似文献   

5.
为了解有空间导叶的离心泵叶轮内部水力性能,借助NUMECA公司的FINE软件,采用NavierStokes方程和Spalart-Allmaras湍流模型,分别在0.8Qopt、Qopt、1.2Qopt工况下对离心泵内部流动进行数值模拟计算。结果表明,随流量的增加,靠近进口边叶片吸力面的抗空蚀性能逐渐增强;叶片间轴向漩涡的位置与流量无关;出口边径向速度随流量增加而增大;出口边切向速度随流量增加而减小。与试验结果的比较表明,在Qopt工况下,数值模拟能有效预测泵内部的复杂三维流动与水力性能。  相似文献   

6.
离心泵内部流动的三维数值模拟   总被引:1,自引:1,他引:0  
基于标准k-ε双方程湍流模型和SIMPLEC算法,采用Fluent6.3软件对一离心泵的叶轮和蜗壳在不同工况下分别进行了三维定常湍流计算,并分析了不同工况下内部流动的差异性,获得了离心泵各过流部件内的流动特性,为离心泵优化设计提供了依据.  相似文献   

7.
为了分析长短叶片离心泵输送固液两相流时叶轮内部流场和流动规律,应用FLUENT软件分别对普通叶片离心泵和长短叶片离心泵内的固液两相流场进行数值模拟,对比分析两者的总压、静压以及固相颗粒浓度的分布规律。结果表明:无论是普通离心泵还是长短叶片离心泵,它们的静压和总压的变化规律相同,均沿着出流方向有增大趋势,在叶轮出口处压力达到最大值;长短叶片离心泵内固相颗粒浓度减小,明显提高了泵的抗磨损性能;与普通离心泵相比,长短叶片离心泵叶轮流道内颗粒的高浓度区域明显变小,运行更加平稳;长短叶片离心泵中颗粒的分布更均匀,流动损失大大减小,流动状态更好。  相似文献   

8.
为深入分析叶轮切割对高比转数双吸离心泵内部流动状况及性能的影响,采用数值方法对三台高比转数双吸离心泵进行了叶轮切割研究,对每台泵所装叶轮均进行4次切割;预测得到了泵的H-Q、η-Q、P-Q特性曲线与内部流场压力、速度等参数的分布云图及其随叶轮切割的变化情况,根据性能预测结果得到了最优工况下叶轮的切割指数。结果表明,当叶轮逐步切割时,泵的流量、扬程、轴功率均逐步降低;切割量较小时,泵的效率基本不变;随着切割量的增大,泵的效率开始下降,当切割量达到15%时效率下降明显;随着叶轮直径的逐步减小,泵内部压力场及速度场分布不均匀性增加;由数值计算所求得的切割指数与传统切割公式中的切割指数存在不一致性。  相似文献   

9.
文中以高速高压离心泵为研究对象,基于ANSYS-Fluent流场仿真软件,采用标准k-ε湍流模型、SIMPLE算法对高速高压条件下运行的离心泵在叶轮有无平衡孔的两种情况分别进行内部流场全流道三维数值模拟,分析叶轮上的平衡孔对离心泵性能及轴向推力的影响,探讨了其减小轴向力的效果。数值模拟的结果表明,若平衡孔的大小合适,平衡孔对泵扬程影响不大,但是对离心泵轴向推力的减小有效。  相似文献   

10.
以对带前置诱导轮的复合叶轮型两级离心泵的流动为研究对象,分析了设计工况下离心泵内部的定常流动。利用计算后的离心泵性能参数绘制其性能曲线,并与实验得到的性能曲线作对比,证明数值分析在一定程度上的可靠性。基于数值计算准确性的前提下,分别计算短叶片不同偏置位置的流场,对比计算后绘制的性能曲线,说明短叶片向吸力面偏置可以改善离心泵内部的外特性。  相似文献   

11.
Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the unsteady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.  相似文献   

12.
Cavitation in miniature pumps was investigated experimentally for two semi-open centrifugal impellers. Although both impellers had the same blade cross-section, one impeller had a two-dimensional blade, while the other had a leaned blade. The flows were also analyzed using a numerical model of the three-dimensional turbulent flow in the pumps near the peak efficiency point using the k-? turbulence model and the VOF cavitation model. The average cavitation performance of each impeller was satisfactorily predicted by the numerical simulations. The results show that the miniature pumps have similar cavitation performances as an ordinary-size pump, with the cavitation performance of the semi-open impeller reduced by increased axial tip clearances. Also, both the hydraulic and cavitation performance of the semi-open impeller were improved by the leaned blade. The results also show that uniform flow upstream of the impeller inlet will improve the cavitation performance of a miniature pump.  相似文献   

13.
Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the per- formance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is con- ducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades. Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the nu- merical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.  相似文献   

14.
In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5° and 39° was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-? turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.  相似文献   

15.
叶莉 《水电能源科学》2017,35(9):135-139
为研究叶片进口位置对小流量工况下离心泵空化性能的影响,应用数值计算方法模拟了比转数为81的离心泵的三种模型,得到不同进口边位置的离心泵空化特性,并分析了叶轮内部流场与空化性能曲线的影响关系。结果表明,在小流量工况下,低比转速离心泵叶片进口边位置越靠前,抗空化性能较好,但严重空化后扬程衰减更快,流道直接被空泡堵塞,流道和叶片表面气泡分布较均匀,且气泡充斥流道速度较快,气泡体积分数各流道差值越小。相比较而言,叶片进口位置越靠后,气泡在流道内部和叶片背面分布不均匀,易出现噪声和振动,但在断裂空化状态,气泡并未完全堵塞流道,扬程下降速度较慢。整体来看,在小流量工况下,叶片进口边位置越靠前,离心泵的抗空化性能较好,并通过试验研究验证了模拟结果的可靠性。研究成果可为小流量工况下低比转速离心泵抗空化性能的优化提供参考。  相似文献   

16.
Vaned diffusers are widely used in centrifugal pumps, but little research has been published regarding action mechanism and the influence of diffuser vane height on dynamics performance of centrifugal pumps. Experimentally and numerically, the present investigation was focused on the dynamics performances of a low specific speed centrifugal pump equipped with vane diffusers with different vane heights. The pump performance was appraised when the diffuser vane height (h/b) was 0 (vaneless), 0.5, 0.6, 0.8 and 1 (vaned) times the diffuser width respectively. The pressure fields were numerically simulated in order to study the influence of half vane diffusers on inner flow field. The experimental results of operating performance showed that the efficiency was significantly improved for 2.5% at design flow point and the head was significantly improved for nearly 3 m at over flow point. The best efficiency point shifted towards higher flow rate with h/b reducing, and the high efficiency area was broadened by using half vane diffusers. Besides, half vane diffusers could reduce the intensity of pressure fluctuations at the leading edge of the stator vanes, and reduce the influence of rotor-stator interaction in tongue region. The numerical results showed that half vane diffusers could enhance flow uniformity in pumps, symmetry of pressure distributions on the impeller outlet and preferable regularity of radial force distributions. Therefore, it is very useful and feasible to apply half vane diffusers in centrifugal pumps.  相似文献   

17.
To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in this paper. The experimental results shows that the asymmetry of static pressure distribution on volute casing and front cavity is caused by the tongue of the volute and it may result in high radial and axial resultant force which can cause vibration and noise in the centrifugal pump. With the increasing of flow rate, the asymmetry of static pressure distribution and the magnitude of static pressure values reduce. The numerical results indicate that the pressure fluctuation near the tongue is strongest and it becomes slighter at point away from the tongue. With the increasing of flow rate, the local high-pressure region in impeller passage reduces and the flow becomes smoother accordingly, whereas the fluid speed becomes much higher which may cause further flow losses. The results predicted by numerical simulation are in coincident with the experimental ones. It shows that the turbulence model for simulating the flow field in centrifugal pumps is feasible.  相似文献   

18.
Numerical simulation of flow in centrifugal pump with complex impeller   总被引:1,自引:0,他引:1  
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically. The relative velocity and pressure distributions in the flowpart are obtained. It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller. The back-flow region is at inlet of long-blade suction side, near middle part of long-blade pressure side and outlet of short-blade suction side. The flow near volute throat is affected greatly by volute. The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat. The static and total pressure rise uniformly from inlet to outlet in the impeller. At impeller outlet, the pressure periodically decreases from pressure side to suction side, and then the static pressure sharply rise near the throat. The experimental results show that the back flow in the impeller has an important influence on the performance of pump.  相似文献   

19.
Vaned diffusers are extensively used in centrifugal pumps, but the influence of vane height on internal flow field and overall performance is not explicit. This paper mainly presents numerical investigation on influence mechanism of diffuser vane height in a single-stage centrifugal pump. The head values were carried out on a low specific speed centrifugal pump equipped with different diffuser vane height by numerical simulation and experimental method. And the deviation between numerical results and experimental results were < 5%. The diffuser vane height h/b ratio is changed as 0, 0.3, 0.4, 0.5, 0.6, 0.8, and 1 in this study. The numerical analysis shows that reducing diffuser vane height could eliminate the vortex which appears at tongue region. Meanwhile, the influence of rotor-stator interaction was reduced by reducing the vane height. Consequently, the energy loss in the volute and the diffuser could both be decreased at design flow point and over flow point. In the other hand, the circumferential velocity at partial flow point gets larger which could lead to large frictional loss. In general, reducing the diffuser vane height at design and over flow point could improve the output work of impeller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号