共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular structure, physical properties, and structure–property relationships of novel open‐cell polyolefin foams produced by compression molding and based on blends of an ethylene/vinyl acetate copolymer and a low‐density polyethylene have been studied and compared with those of closed‐cell polyolefin foams of similar chemical compositions and densities and with those of open‐cell polyurethane foams. Properties such as the elastic modulus, collapse stress, energy absorbed in mechanical tests, thermal expansion, dynamic mechanical response, and acoustic absorption have been measured. The experimental results show that the cellular structure of the analyzed materials has interconnected cells due to the presence of large and small holes in the cell walls, and this structure is clearly different from the typical structure of open‐cell polyurethane foams. The open‐cell polyolefin foams under study, in comparison with closed‐cell foams of similar densities and chemical compositions, are good acoustic absorbers; they have a significant loss factor and lower compressive strength and thermal stability. The physical reasons for this macroscopic behavior are analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
The 1H NMR spectrum of poly(ethylenimine) (PEI) has been assigned using two‐dimensional NMR correlation with the previously established assignment of the 13C spectrum. The oxidative thermal and UV degradation of PEI has been studied using mass loss measurements, and NMR and Fourier transform infrared spectroscopy. Analysis of the spectra of the degradation products shows that the degradation process may readily be monitored, particularly by 13C NMR. The major products are formamide and other amide groups which may be understood in terms of chain scission and dehydration reactions of hydroperoxides. Copyright © 2006 Society of Chemical Industry 相似文献
3.
Eun‐Soo Park 《应用聚合物科学杂志》2008,109(6):3631-3638
The copolymerization of ethylene and 1,7‐octadiene was carried out to synthesize polyethylene with unreacted vinyl groups. The prepared copolymer [poly (ethylene‐co‐1,7‐octadiene) (PEOD)] was epoxidized with peracetic acid, m‐chloroperbenzoic acid, or formic acid/H2O2. Of these, peracetic acid gave the best results. Epoxidized PEOD was subjected to a reaction with 2‐mercaptobenzimidazole and poly(L ‐lactic acid). The bromination of PEOD was also performed in the presence of a Br2/HBr solution at room temperature. The brominated poly(ethylene‐co‐1,7‐octadiene) (PEOD‐Br) was used as a macroinitiator for atom transfer radical polymerization. The polymerization of styrene, butyl methacrylate, and glycidyl methacrylate was performed in bulk or solution at 120°C with a PEOD‐Br/CuBr/2,2′‐dipyridyl initiator system. The thermal properties of the graft copolymers and the efficiency of the graft polymerization were investigated. These graft copolymers have potential applications as interfacial modifiers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
4.
Polyolefin binary and ternary blends were prepared from polypropylene (PP), an ethylene–α‐olefin copolymer (mPE), and high‐density polyethylene (HDPE) on the basis of the viscosity ratio of the dispersed phase to the continuous phase. In PP/mPE/HDPE blends, fibrils were observed when the dispersed‐phase (mPE/HDPE) viscosity was less than that of PP, or when the viscosity of mPE was less than that of PP, although the viscosity of mPE/HDPE was greater than that of PP. The notched impact strength and mechanical properties such as the yield strength, flexural modulus, and hardness of PP/mPE binary blends further increased with the addition of HDPE according to the type of HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4027–4036, 2004 相似文献
5.
Understanding the sequence of reactions that occur in ultra‐high‐molecular‐weight polyethylene (UHMWPE) following 60Co γ irradiation has been the focus of numerous experimental studies. In the study reported here, we have incorporated recent experimental findings into a mathematical model for UHMWPE oxidation. Simulation results for shelf aging and accelerated aging are presented. It is shown that very reasonable simulations of shelf‐aging and accelerated‐aging data can be obtained. It is also shown that simulations of shelf aging in reduced oxygen environments predict that the subsurface peaks of ketones will be shifted to the exterior surface. In vivo aging can be simulated if we assume that the oxygen level in the synovial fluid is about one‐eighth that of atmospheric levels. Some reduced irradiation doses are predicted to significantly reduce the ketone formation for shelf‐aging periods of up to 10 years. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 814–826, 2003 相似文献
6.
The products and mechanism of the thermal oxidative degradation of poly(ethylene oxide) at 150 °C have been analysed using 1H and 13C 1‐D and 2‐D NMR spectroscopy, including COSY, HMQC, HMBC and DOSY techniques. Peaks from methanoate ester chain ends (in the majority), in‐chain esters, peroxy groups, acetal links and ethanoyl chain ends have been assigned. Two small molecule degradation products, 2‐hydroxyethyl methanoate and ethylene glycol dimethanoate have been identified. Copyright © 2004 Society of Chemical Industry 相似文献
7.
The coarsening rates of the two‐phase morphologies of linear polyethylene/poly(ethylene‐co‐1‐octene) blends were determined as functions of molecular weight. Samples with cocontinuous morphologies that were prepared through solution blending were annealed in the melt state for various times, and, subsequently the length scales of the morphologies were determined with a line‐intersection method. Length‐scale data were multiplied by a function that normalized for the effects of differences in zero‐shear‐rate viscosity and thermal energy; after normalization, the data largely fell on one trend line within the bounds of experimental error. This indicated that the principal effect of increasing molecular weight was to slow the coarsening rate through an increase in melt viscosity, with little effect from the thermodynamic compatibility of the two polymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1655–1661, 2003 相似文献
8.
L. A. Novokshonova I. N. Meshkova T. M. Ushakova V. G. Grinev T. A. Ladigina N. M. Gultseva O. I. Kudinova S. De Boer 《应用聚合物科学杂志》2003,87(4):577-583
CaCO3–polyethylene (PE) compositions, containing an ultrahigh molecular polyethylene (UHMPE) interlayer between the filler surface and the PE matrix, were synthesized by two‐step polymerization of ethylene on a filler surface activated with a suitable catalyst. The properties of the compositions were studied depending on the molecular weight of the PE matrix and the thickness of the UHMPE intermediate layer at the filler particles. It was shown that the presence of UHMPE as an interlayer in chalk–UHMPE–PE compositions leads to an increase of plastic deformation of the materials as long as the Mw value of the PE matrix is higher than is the brittleness threshold for PE. Chalk–UHMPE–PE compositions exhibit a higher ability for plastic deformation compared to chalk–PE compositions based on a PE matrix of a molecular weight equal to the molecular weight of the total polymer phase (UHMPE–PE) in the first case. There is no improvment of the mechanical properties when the UHMPE is dispersed in the compositions and not as an interlayer between a filler and a matrix. This means that the method of polymerization filling allows one to incorporate the polymer interlayer with a desired nature and properties between a filler surface and polymer matrix in filled polyolefin compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 577–583, 2003 相似文献
9.
C? O, C?O, and C(?O)O oxygen‐containing groups were introduced onto the molecular chain of high‐density polyethylene (HDPE) through ultraviolet irradiation in air. The introduction rate of the oxygen‐containing groups onto HDPE increased with increasing environmental temperature. After ultraviolet irradiation, the molecular weight of HDPE decreased, and its distribution became wider; the melting temperature, contact angle with water, and impact strength decreased; the degree of crystallinity and yield strength increased; and their variation amplitude increased with environmental temperature. The environmental temperature had an effect on the gel content of irradiated HDPE. HDPE‐irradiated for 48 h at 35° and 50°C were not crosslinked. However, gelation took place in HDPE irradiated for 24 h at 70°C. HDPE irradiated at a high environmental temperature was more effective than that irradiated at a low environmental temperature in compatibilizing HDPE with PVA. Compared with the 83/17 HDPE/PVA blend, the yield and notched impact strength of the 73/17 HDPE/PVA blend compatibilized with 10% HDPE irradiated for 24 h at an environmental temperature of 70°C increased from 30.8 MPa and 110 J/m to 34.9 MPa and 142 J/m, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2966–2969, 2003 相似文献
10.
Wood‐plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. In this study, we examined the performance of wood flour/high‐density polyethylene composites after accelerated weathering. Two 24 factorial experimental designs were used to determine the effects of two hindered amine light stabilizers, an ultraviolet absorber, a colorant, and their interactions on the photostabilization of high‐density polyethyl‐ ene blends and wood flour/high‐density polyethylene composites. Color change and flexural properties were determined after 250, 500, 1000, and 2000 h of accelerated weathering. The results indicate that both the colorant and ultraviolet absorber were more effective photostabilizers for wood flour/high‐density polyethylene composites than the hindered amine light stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2609–2617, 2003 相似文献
11.
The effect of γ‐radiation, followed by 10 years storage at ambient conditions, on the thermal behavior of different types of high‐ and low‐density commercial polyethylenes was studied. First, samples were annealed to improve the crystalline content. Next, they were irradiated, after which fusion endotherms, melting temperatures, crystallinity indices, and lamellar thicknesses were obtained by differential scanning calorimetry (DSC). The change in the thermal parameters for the first and second meltings were related to the absorbed doses. Afterward, the samples were stored at ambient conditions for 10 years and then scanned again by DSC to assess the influence of aging on previously irradiated samples. The results showed that the changes on the morphological structure undergone by the samples with the storage time were highly dependent on the polyethylene type and the absorbed radiation dose. The high‐density polyethylene was the most sensitive to radiation and storage, whereas the low‐density polyethylene with the lowest molecular weight and the highest degree of branching was the least affected. In general, the changes observed during irradiation can be explained in terms of an increase of imperfections and chain scissions. The storage can be understood as a slow crystallization process at low radiation doses, and as a decrease of the crystalline structure at high doses. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3260–3271, 2003 相似文献
12.
The aging of polymers is often monitored by mechanical property measurements such as those of Young's modulus or tensile elongation at break; new methods are required, however, in situations where traditional mechanical methods cannot be employed. A hydroxy‐terminated polybutadiene/isophorone diisocyanate elastomer is commonly used as a propellant binder. The thermal degradation of the binder is believed to be an important parameter governing the performance of the propellant. Classical mechanical methods cannot be used to monitor the condition of this material when it has been aged in situ as a highly dispersed binder. In this study, the 1H‐NMR spin‐spin relaxation times, T2, of solvent‐swelled samples decreased substantially as thermally induced oxidation led to additional crosslinking. A time–temperature superposition analysis of the relaxation times was performed on samples that had been aged at temperatures ranging from 50 to 125°C. The acceleration factors derived from the relaxation measurements agreed with those reported earlier for tensile elongation at break and oxygen consumption. The dependence of T2 on tensile elongation at break was independent of the temperature at which the sample was aged. A shortened version of the experiment, requiring only two spin‐echo delay times, is presented. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3636–3641, 2002 相似文献
13.
The electrical‐resistivity/temperature behaviors of low‐density polyethylene (LDPE)/carbon black (CB) composites irradiated with 60Co γ rays were studied. The experimental results showed that the irradiated composites could be separated into insoluble crosslinking networks with CB (gel) and soluble components (sol) by solvent‐extraction techniques. When the sol of an irradiated LDPE/CB composite was extracted, the electrical conductivity of the system increased. The positive‐temperature‐coefficient (PTC) and negative‐temperature‐coefficient (NTC) intensities of the gels of the irradiated composites became extremely small and independent of the radiation dose. The sols and gels of the irradiated LDPE/CB composites, which had different thermal behaviors, played important roles in the appearances of the PTC and NTC effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 700–704, 2005 相似文献
14.
Francisco Vilaplana Vanesa Morera‐Escrich Pilar del Hierro‐Navarro Benjamín Monrabal Amparo Ribes‐Greus 《应用聚合物科学杂志》2004,94(4):1803-1814
The effects of γ‐radiation on a low‐density polyethylene (LDPE) were investigated by novel techniques, such as crystallization analysis fractionation and preparative fractionation, to analyze and compare their performance with other analytical procedures such as DSC, FTIR, and GPC. The LDPE was thus irradiated with four different doses of γ‐radiation. Different fractions were obtained from these irradiated materials by preparative fractionation, which were characterized by the above‐mentioned analysis techniques. The changes in the morphology and chemical structure of LDPE after the irradiation were analyzed and it was found that both oxidative scission and crosslinking are phenomena related to the exposure of LDPE at high‐energy radiation. Crystallization analysis fractionation and preparative fractionation proved to be suitable techniques to characterize the effects of γ‐radiation on a low‐density polyethylene material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1803–1814, 2004 相似文献
15.
The radiation‐induced graft polymerization of N‐vinyl‐2‐pyrrolidone onto low‐density polyethylene films was conducted with γ radiation by a simultaneous technique. The grafted copolymer was modified with cinnamonitrile or benzylidene malononitrile. The modified and grafted films were amidoximated with hydroxylamine hydrochloride in a basic medium. However, during amidoximation, the benzylidene malononitrile was cyclized to yield isoxazole ring through an addition to the nitrile group in its structure, whereas the nitrile groups of cinnamonitrile were converted into amidoxime groups. The swelling behavior of the grafted copolymers and copolymers grafted and modified either with cinnamonitrile or benzylidene malononitrile was studied. Amidoximated and grafted films and copolymer–metal complexes of Cu(II) were prepared and characterized. The effect of the isoxazole ring on polymeric materials was also investigated. These films were characterized with different analysis techniques, such as infrared, ultraviolet (UV), elemental analysis, energy‐dispersive spectroscopy, and electron spin resonance (ESR). The UV and ESR analyses revealed that the geometric structure of Cu(II) was square‐planar. Scanning electron microscopy was used to examine the grafted and modified films to determine the changes in the surface morphology. Morphological changes clearly appeared for both complexed and isoxazole films because of the increase in their crystallinity. The thermal stability of different films was investigated with thermogravimetric analysis. The improvement of the copolymer by modification with cinnamonitrile derivatives showed great promise for some practical applications, such as metal recovery by complexation or the use of isoxazole in medicine. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1189–1197, 2005 相似文献
16.
Crosslinked polyethylene foam is widely used in packaging and as an insulation material. Finely ground waste of such crosslinked foam mesh size 7 or particle size less than 2815 μm is used as a filler in high‐density polyethylene (HDPE) of two different grades (7.5 and 21 MFI). Mechanical, thermal, and morphological properties of filled composites is studied experimentally. Waste foam powder concentration was varied up to 40% by weight basis. Impact strength of base HDPE increased by a factor of six. The overall changes in mechanical properties are similar to the crosslinking effect. It is believed that waste foam particles act as a point of entanglement with different chains of polyethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 110–114, 2004 相似文献
17.
α‐Tocopherol was compared with a commercial phenolic antioxidant (Irganox 1076) as a long‐term and process antioxidant in film‐blown and compression‐molded linear low‐density polyethylene. The antioxidant function of α‐tocopherol was high in the film‐blown material, especially in the processing, according to oxygen induction time measurements with differential scanning calorimetry. The residual content of α‐tocopherol after processing, determined with chromatographic techniques, was less than that of the commercial phenolic antioxidant in both the film‐blown and compression‐molded materials. The process stabilizing efficiency was nevertheless higher for the material containing α‐tocopherol. During the long‐term stabilization, the efficiency of α‐tocopherol was less than that of the commercial phenolic stabilizer Irganox 1076 in the thin films, according to chemiluminescence and infrared measurements. The long‐term efficiency in the compression‐molded samples stabilized with α‐tocopherol or Irganox 1076 was equally good because of the low loss of both α‐tocopherol and Irganox 1076 from the thicker films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2427–2439, 2005 相似文献
18.
Thermo‐mechanical degradation of LDPE‐based nanocomposites was studied by mainly investigating the rheological properties. For all of the investigated processing conditions, the viscosity of the nanocomposites was higher than that of the pure‐LDPE matrix, but on increasing the severity of the mixing conditions, the difference between the viscosity of the nano‐filled polymer and that of the pure LDPE decreased. The X‐ray traces of the nanocomposites suggest that intercalation has been achieved during the melt, when less‐severe processing conditions were used. At severe processing conditions (longer mixing time, high temperature and shear stress) the thermo‐mechanical degradation was accelerated, possibly due to the loss of mass from the organoclay galleries. The variations of the viscosity in the presence of two organo‐modified montmorillonite (MMt) clays were compared to the ones observed with a MMt clay at different processing conditions.
19.
The electrical conductivities of various polyolefins filled with a high‐structure carbon black (CB) were studied. Typical percolation behaviors were observed in all of the materials studied. At a critical CB content, which defined the percolation threshold, CB formed conductivity pathways, and resistivity fell sharply from a value characteristic of an insulator into the range of 10–100 Ω cm. The dependence of the percolation threshold on the matrix viscosity was understood in terms of competing effects on CB dispersion during blending and CB flocculation during compression molding. For the conditions used in this study, polypropylene with a melt flow index of about 50 was optimum. Flocculation in the quiescent melt was studied directly by atomic force microscopy. Conductivity pathways formed over time by CB agglomeration. The temperature dependence of the percolation time was described by an Arrhenius relationship. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1799–1805, 2005 相似文献
20.
Two different extrusion‐coating qualities of polyethylene, namely LDPE and HDPE, were coated on high‐density papers. Differences were observed with respect to their response to storage and low temperature heat treatment. HDPE does not respond to storage at ambient temperature and heat treatment in the same way as LDPE. The LDPE‐coating exhibits an increase in the monoclinic crystalline fraction at the paper surface as a result of heat treatment. The nature of this response appears to be a result of adhesion to a paper surface, the properties of this surface, orientation of polymer chains, and chain mobility differences. The increase of the monoclinic fraction is shown to relate to an increase of the mean crystallite thickness and initiation of new crystallites at the paper surface. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 235–241, 2004 相似文献