首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风速序列分解为若干个平稳的风速子序列,结合改进多元宇宙优化算法(IMVO)寻优最小二乘支持向量机(LSSVM)的可调参数预测方法,建立了LMD-IMVO-LSSVM的风速预测组合模型;然后对分解得到的每个平稳子序列进行单独的预测,叠加各子序列预测结果,即得到最终的风速预测值。通过实验仿真分析得出,文章提出的组合预测模型可大大提高风速预测的准确性。  相似文献   

2.
由于风速信号是非线性、非稳定性的动态信号,用传统预测方法难以达到满意效果。为提高预测精度,提出了基于经验模态分解与多步预测的最小二乘支持向量机相结合的方法,对风速时间序列进行建模预测,即首先对风速动态信号进行经验模式分解,将原信号分解为若干个不同特征尺度(频率)的本征模态函数,然后对不同频带的平稳IMF分量分别建立多步预测的最小二乘支持向量机模型,将各分量的预测值等权求和得到最终预测值。实例分析结果表明,与单一的最小二乘支持向量机预测方法相比,经验模态分解与多步预测的最小二乘支持向量机相结合的风速预测方法误差小,可应用于风速预测中。  相似文献   

3.
受风能随机性和预测模型的影响,风速预测时不可避免地会出现误差,通过挖掘误差特性可探索新的风速预测模型,提高预测精度。提出一种基于误差预测的风速集成学习模型。该模型首先采用快速集合经验模态分解来降低风速序列的随机性,其次采用布谷鸟算法优化最小二乘支持向量机对分解得到的各分量分别建立学习预测模型。同时将历史预测误差作为一个新序列,进行建模预测。最后将原序列的风速预测结果和误差序列预测结果进行叠加得到最终风速预测结果。算例结果表明,与传统方法相比,所提集成预测模型具有更好的预测精度,证明了在风速预测中,精细化挖掘预测误差对于提高预测精度的有效作用。  相似文献   

4.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。  相似文献   

5.
提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。  相似文献   

6.
为解决由于风电预测中出现的波动性和随机性造成风电功率预测精确度不高的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)、Tent混沌映射、随机游走的麻雀搜索优化算法(sparrow search algorithm,SSA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的组合模型。首先应用鲸鱼优化算法(whales optimization algorithm,WOA)对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经过WOA-VMD对原始风电功率时间序列分解过后,引入改进的麻雀搜索算法SSA优化最小二乘支持向量机LSSVM中的学习参数,然后对分解得到的各个子序列建立SSALSSVM预测模型;最后叠加各个子序列的预测值并得到最终预测值。经实验仿真对比,该文组合模型较现有单一预测模型和普通组合模型在预测精度上有较大提高。  相似文献   

7.
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上.结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值.与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景.最后通过具体实例验证了该模型的有效性.  相似文献   

8.
基于经验模态分解(EMD)算法的递归特性提出优化变分模态分解(VMD)算法,结合能量熵方法构建多模态特征矩阵,通过鲸鱼算法优化的支持向量机技术(OSVM)实现轴承的故障诊断,并验证所提算法的有效性。结果表明:基于VMD算法和能量熵构建的多模态特征矩阵对故障的区分度优于EMD算法和能量熵方法;与现有方法相比,所提VMD-OSVM算法在变负载和噪声环境下的诊断准确率分别高出13.8%与30%,体现了该算法良好的鲁棒性和泛化性能;在相同计算资源下,所提VMD-OSVM算法的运行时间更短,效率更高。  相似文献   

9.
针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,利用变分模态分解将原始功率信号数据分解多个子序列。其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测。最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性。结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度。  相似文献   

10.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。  相似文献   

11.
针对径流序列不稳定导致预测精度不高的问题,提出一种基于变分模态分解(VMD)和蝗虫优化算法(GOA)优化相关向量机(RVM)的组合径流预测模型。首先对原始非平稳的径流序列采用VMD得到若干个相对稳定的分量序列,再分别建立RVM预测模型,并采用GOA优化RVM中核函数的参数,最后累加所有分量的预测值得到径流序列的预测值。实例结果发现,较传统的BP神经网络、支持向量机及基于经验模态分解的支持向量机等模型,该模型预测精度更高,预测结果能为水电站的经济运行、水资源的有效利用等提供决策依据。  相似文献   

12.
支持向量机的训练速度慢.制约了它的发展和推广应用。Suykens提出了一种新的支持向量机方法——最小二乘支持向量机。最小二乘支持向量机是支持向量机的发展和改进,它采用等式约束替代不等式约束,求解速度大大加快。将其用于大坝的渗流监测中.并与传统的支持向量机进行了比较,结果显示二者的预测效果都比较好.但是最小二乘支持向量机的训练效率比支持向量机要高。  相似文献   

13.
最小二乘支持向量机在大坝变形预测中的应用   总被引:11,自引:5,他引:11  
介绍了基于统计学习理论的一种新的机器学习技术———支持向量机(SVM)和其拓展方法———最小二乘支持向量机(LSSVM),并将LSSVM算法应用于混凝土大坝安全监控中的变形预测。根据实测数据,建立了基于LSSVM算法的大坝变形预测模型,同时与经典SVM预测模型进行分析比较。结果表明,LSSVM和经典SVM算法在大坝变形预测中都具有较好的可行性、有效性及较高的预测精度;LSSVM在算法的学习训练效率上比SVM有较大的优势,更适合于解决大规模的数据建模。  相似文献   

14.
风力发电具有波动性、间歇性和随机性的特点,风力发电的并网给电力系统的安全运行带来了严峻挑战,因此,实现风电场风速的预测具有重要意义。支持向量机是发展比较好的一种常用的风速预测方法,但是由于其输入特征对预测的精度影响比较大,所以特征的选择一直是人们所关注的问题。文章提出采用相空间重构理论对风电场风速进行预测,并通过与使用自然特征作为输入特征的预测方法作比较,验证了基于相空间重构的支持向量机的预测方法的优越性。  相似文献   

15.
张冬梅  徐卫亚  赵博 《水电能源科学》2014,32(5):105-108,100
鉴于预测边坡位移变化对边坡稳定性的重要意义,利用布谷鸟优化算法(COA)对最小二乘支持向量机(LSSVM)的核函数参数和惩罚因子进行寻优,从而建立了边坡位移时序预测的COA-LSSVM模型,并将该模型应用于锦屏一级水电站左岸高边坡变形预测中。与PSO-LSSVM模型的预测结果对比表明,COA-LSSVM模型具有更高的预测精度,预测结果更接近于实际的监测数据。  相似文献   

16.
基于EMD分解的风电场风速和输出功率年度预测   总被引:2,自引:0,他引:2       下载免费PDF全文
王晓兰  李辉 《太阳能学报》2011,32(3):301-306
应用历史年份的小时平均风速数据,预测下一年度逐月的风速和风电功率.对历史年份的逐月风速数据进行经验模式分解,采用递推最小二乘法建市各分量的二元线性回归预测模型,将各分量预测模型等权求和得到次年度对应月份的预测模型.对实测数据的仿真计算表明,提前一年的风速月度预测的平均MAPE为16.25%,提高了此类预测的精度.考虑具体风力发电机组的功率特性、机组效率和设备运行情况,可得出次年风电场的输出功率值.  相似文献   

17.
吴玫  吕艳玲 《节能》2022,41(1):41-43
针对现有风速预测精度不高等问题,选择一种组合核函数的支持向量机回归模型(SVR),根据粒子的适应度动态自适应地调节算法中惯性权重取值的改进粒子群优化算法优化模型参数,建立基于改进PSO-SVR的短期风速预测模型,通过实例研究验证该方法的有效性与实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号