共查询到17条相似文献,搜索用时 46 毫秒
1.
《可再生能源》2021,39(9)
风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风速序列分解为若干个平稳的风速子序列,结合改进多元宇宙优化算法(IMVO)寻优最小二乘支持向量机(LSSVM)的可调参数预测方法,建立了LMD-IMVO-LSSVM的风速预测组合模型;然后对分解得到的每个平稳子序列进行单独的预测,叠加各子序列预测结果,即得到最终的风速预测值。通过实验仿真分析得出,文章提出的组合预测模型可大大提高风速预测的准确性。 相似文献
2.
由于风速信号是非线性、非稳定性的动态信号,用传统预测方法难以达到满意效果。为提高预测精度,提出了基于经验模态分解与多步预测的最小二乘支持向量机相结合的方法,对风速时间序列进行建模预测,即首先对风速动态信号进行经验模式分解,将原信号分解为若干个不同特征尺度(频率)的本征模态函数,然后对不同频带的平稳IMF分量分别建立多步预测的最小二乘支持向量机模型,将各分量的预测值等权求和得到最终预测值。实例分析结果表明,与单一的最小二乘支持向量机预测方法相比,经验模态分解与多步预测的最小二乘支持向量机相结合的风速预测方法误差小,可应用于风速预测中。 相似文献
3.
受风能随机性和预测模型的影响,风速预测时不可避免地会出现误差,通过挖掘误差特性可探索新的风速预测模型,提高预测精度。提出一种基于误差预测的风速集成学习模型。该模型首先采用快速集合经验模态分解来降低风速序列的随机性,其次采用布谷鸟算法优化最小二乘支持向量机对分解得到的各分量分别建立学习预测模型。同时将历史预测误差作为一个新序列,进行建模预测。最后将原序列的风速预测结果和误差序列预测结果进行叠加得到最终风速预测结果。算例结果表明,与传统方法相比,所提集成预测模型具有更好的预测精度,证明了在风速预测中,精细化挖掘预测误差对于提高预测精度的有效作用。 相似文献
4.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。 相似文献
5.
6.
为解决由于风电预测中出现的波动性和随机性造成风电功率预测精确度不高的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)、Tent混沌映射、随机游走的麻雀搜索优化算法(sparrow search algorithm,SSA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的组合模型。首先应用鲸鱼优化算法(whales optimization algorithm,WOA)对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经过WOA-VMD对原始风电功率时间序列分解过后,引入改进的麻雀搜索算法SSA优化最小二乘支持向量机LSSVM中的学习参数,然后对分解得到的各个子序列建立SSALSSVM预测模型;最后叠加各个子序列的预测值并得到最终预测值。经实验仿真对比,该文组合模型较现有单一预测模型和普通组合模型在预测精度上有较大提高。 相似文献
7.
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上.结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值.与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景.最后通过具体实例验证了该模型的有效性. 相似文献
8.
9.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。 相似文献
10.
11.
采用现有方法预测短期变速恒频风力发电系统的风速时,因未分析风力机的运行特性而导致无法准确预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差大,为此提出变速恒频风力发电系统风速的预测方法。首先对风力机的运行特性进行分析,然后采用支持向量机回归算法构建风速预测模型,最后利用风速预测模型完成变速恒频风力发电系统风速的短期预测。实验结果表明,所提方法可准确地预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差小,验证了所提方法的整体有效性。 相似文献
12.
为降低由于风速信号的非线性和非平稳性带来的风速预测难度,提高短期风速预测的准确性,提出一种考虑样本熵的组合分解模式和支持向量回归(SVR)相结合的预测模型。首先采用自适应噪声的完全集合经验模态分解(CEEMDAN)方法分解风速历史数据,并计算各模态分量的样本熵;然后采用变分模态分解(VMD)方法对样本熵最大的模态分量进行二次分解,充分削弱风速分量的非平稳性;接着对分解得到所有模态分量分别建立SVR预测模型;最后将各分量的预测值求和完成最终风速预测。实例分析表明,所提模型对比其他模型的预测误差最小,预测精度最高,可有效预测短期风速。 相似文献
13.
基于时间序列模型的风电场风速预测研究 总被引:1,自引:0,他引:1
基于时间序列的方法,对风速的长期预测进行了研究,并在工程应用的基础上提出了新的预测思路:首先将风速信号分解成趋势信号和去趋势项随机信号,然后分别用滑动滤波和小波分析这2种方法对分解出的去趋势项随机信号进行数据处理并比较,再用时间序列的方法对趋势项信号和处理后的信号分别进行预测并叠加,得到最后的预测风速信号.结果表明:五项滑动滤波处理数据的方法与Daubechies小波分解法均能实现精度较高的风速长期预测;与小波分解法相比,滑动滤波方法算法的复杂性低,在工程应用上可行性更高. 相似文献
14.
考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD),通过排列熵剔除异常分量,再对剩余分量进行经验模态分解(EMD),其结果即为MEEMD分解所得分量,对分量分别建立GAELM预测模型,将各分量预测结果相加,即得到最终预测结果。对东北某风电场实测数据进行试验表明,与传统预测方法相比,组合预测模型有效提高了短期风功率预测的精确性。 相似文献
15.
基于SVM方法的风电场短期风速预测 总被引:2,自引:3,他引:2
针对基于支持向量机的风电场短期风速预测进行研究.选择了不同的输入向量(历史风速时间序列,历史风速和温度.历史风速、温度和风向,历史风速、温度和时间)作为输入进行误差对比分析。实测数据及分析结果表明,采用历史风度和温度的二输入模型,预测效果最佳,为风速的短期预测和发电量预测提供了较好的参考价值。 相似文献
16.
针对径流序列不稳定导致预测精度不高的问题,提出一种基于变分模态分解(VMD)和蝗虫优化算法(GOA)优化相关向量机(RVM)的组合径流预测模型。首先对原始非平稳的径流序列采用VMD得到若干个相对稳定的分量序列,再分别建立RVM预测模型,并采用GOA优化RVM中核函数的参数,最后累加所有分量的预测值得到径流序列的预测值。实例结果发现,较传统的BP神经网络、支持向量机及基于经验模态分解的支持向量机等模型,该模型预测精度更高,预测结果能为水电站的经济运行、水资源的有效利用等提供决策依据。 相似文献