首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of polycondensation and copolycondensation reactions of bis(3‐hydroxypropyl) terephthalate (BHPT) and bis(2‐hydroxyethyl) terephthalate (BHET) as monomers were investigated at 270°C, in the presence of titanium tetrabutoxide (TBT) as a catalyst. BHPT was prepared by ester interchange reaction of dimethyl terephthalate (DMT) and 1,3‐propanediol (PD). Applying second‐order kinetics for polycondensation, the rate constants of polycondensation of BHPT and BHET, k11 and k22, were calculated as 3.975 and 2.055 min−1, respectively. The rate constants of cross‐reactions in the copolycondensation of BHPT and BHET, k12 and k21, were obtained by using the results obtained from a proton nuclear magnetic resonance spectroscopy. The rate constants during the copolycondensation of BHPT and BHET at 270°C decreased in the order k11 > k12 > k22 > k21, indicating the block nature of the copolycondensation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 693–698, 2000  相似文献   

2.
Summary The effect of copolycondensation temperature on the monomer reactivity ratios of bis(4-hydroxybutyl) terephthalate (BHBT) and bis(2-hydroxyethyl) terephthalate (BHET) was investigated at 260, 270, and 280 °C, in the presence of titanium tetrabutoxide as a catalyst. Adopting 2nd order kinetics to polycondensation, the rate constants of polycondensation of BHBT and BHET, k 11 and k 22, were calculated to be 2.58, 1.30; 3.87, 2.24; and 5.29, 4.06 min−1. In addition, the rate constants k 12 and k 21 of cross reactions could be determined as 0.91, 3.00; 1.49, 4.42; and 2.13, 5.85 min−1 from a proton nuclear magnetic resonance spectroscopic analysis. The monomer reactivity ratios of BHBT were much larger than those of BHET, indicating the block nature of the copolycondensation, but the differences between monomer reactivity ratios were decreased with increasing polycondensation temperature, indicating that a probability of randomization was increased. Received: 15 October 1998/Revised version: 3 December 1998/Accepted: 8 December 1998  相似文献   

3.
The kinetics of polycondensation and copolycondensation reactions were investigated using bis(4-hydroxybutyl) terephthalate (BHBT) and bis (2-hydroxyethyl) terephthalate (BHET) as monomers. BHBT was prepared by ester interchange reaction of dimethyl terephthalate and 1,4-butanediol. BHBT and BHET were polymerized at 270°C in the presence of titanium tetrabutoxide (TBT) as a catalyst. Applying second-order kinetics for polycondensation, the rate constants of polycondensation of BHBT and BHET, k11 and k22, were calculated as 3.872 min−1 and 2.238 min−1, respectively. BHBT and BHET were also copolymerized at 270°C using TBT. The rate constants of crossreactions in the copolycondensation of BHBT and BHET, k12 and k21, were obtained by using the results obtained from a proton nuclear magnetic resonance (1H-NMR) spectroscopy and a high-performance liquid chromatography (HPLC). It was found that the rate constants during the copolycondensation of BHBT and BHET at 270°C decreased in the order k21 > k11> k22 > k12 and the monomer reactivity ratio of BHBT was four or five times larger than that of BHET. In calculating the crossreactions, the method by the 1H-NMR spectroscopy gave more accurate results than that by the HPLC. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Homopolymers and copolymers were synthesized by polycondensation and copolycondensation, with varying feed ratios of bis(3‐hydroxypropyl terephthalate) (BHPT) and bis(4‐hydroxybutyl terephthalate) (BHBT) at 270°C. In addition, in the mol ratio of 1:1, copoly(trimethylene terephthalate/butylene terephthalate) [P(TT/BT)], with reaction times of 5, 10, 20, 30, and 60 min, was synthesized to identify the chain‐growth process of the copolymers. From differential scanning calorimetry (DSC) data, it was found that a random copolymer might be formed during copolycondensation. The molecular structure of copolymers, formed through the interchange reaction of BHPT and BHBT, was investigated using carbon nuclear magnetic resonance spectroscopy (13C‐NMR). We calculated the sequence‐length distributions of trimethylene and butylene sequences and randomness in the copolymers using 13C‐NMR data. From the values of the number‐average sequence length calculated, it was determined that a random copolymer was produced: This result coincides with previous DSC data. The lateral spacing of the unit cell of the copolymer increased slowly when the mol percent of one monomer was increased to that of the other monomer, indicating broadening of the unit cell by lateral distortion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2200–2205, 2003  相似文献   

5.
Series of 1‐allyl‐3‐methylimidazolium halometallate ionic liquids (ILs) were synthesized and used to degrade poly(ethylene terephthalate) (PET) as catalysts in the solvent of ethylene glycol. One important feature of these new IL catalysts is that most of them, especially [amim][CoCl3] and [amim][ZnCl3], exhibit higher catalytic activity under mild reaction condition, compared to the traditional catalysts [e.g., Zn(Ac)2], the conventional IL catalysts (e.g., [bmim]Cl), Fe‐containing magnetic IL catalysts (e.g., [bmim][FeCl4]), and metallic acetate IL catalysts (e.g., [Deim][Zn(OAc)3]). For example, using [amim][ZnCl3] as catalyst, the conversion of PET and the selectivity of bis(hydroxyethyl) terephthalate (BHET) reach up to 100% and 80.1%, respectively, under atmospheric pressure at 175°C for only 1.25 h. Another important feature is that BHET can be easily separated from the catalyst and has a high purity. Finally, based on the experimental phenomena, in ‐situ infrared spectra, and experimental results, the possible mechanism of degradation with synthesized IL is proposed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The combination of ionic liquid (IL) associated with microwave energy may have some potential application in the chemical recycling of poly (ethylene terephthalate). In this processes, glycolysis of waste poly (ethylene terephthalate) recovered from bottled water containers were thermally depolymerized with solvent ethylene glycol (EG) in the presence of 1‐butyl‐3‐methyl imidazolium bromide ([bmim]Br) as catalyst (IL) under microwave condition. It was found that the glycolysis products consist of bis (2‐hydroxyethyl) terephthalate (BHET) monomer that separated from the catalyst IL in pure crystalline form. The conversion of PET reach up to 100% and the yield of BHET reached 64% (wt %). The optimum performance was achieved by the use of 1‐butyl‐3‐methyl imidazolium bromide as a catalyst, microwave irradiations temperature (170–175°C) and reaction time 1.75–2 h. The main glycolysis products were analyzed by 1H NMR, 13C NMR, LC‐MS, FTIR, DSC, and TGA. When compared to conventional heating methods, microwave irradiation during glycolysis of PET resulted in short reaction time and more control over the temperature. This has allowed substantial saving in energy and processing cost. In addition, a more efficient, environmental‐friendly, and economically feasible chemical recycling of waste PET was achieved in a significantly reduced reaction time. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41666.  相似文献   

7.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

8.
A series of poly[ethylene‐co‐bis(2‐ethoxy)hydroquinone terephthalate], PET‐co‐BEHQ copolymers were prepared by polymerization of various substituted bis(2‐hydroxyethyl)hydroquinones (BEHQs), dimethyl terephthalate (DMT), and ethylene glycol (EG). In addition to copolymers containing 6–16.5 mol % BEHQ, the homopolymer of BEHQ with dimethyl terephthalate, p(BEHQ‐T), was also prepared. The thermal and barrier properties of amorphous materials were studied. As the amount of comonomer was increased, the Tg and Tm of the materials decreased relative to those of PET. Oxygen permeability also decreased with increasing comonomer content. This improvement in barrier‐to‐oxygen permeability was primarily due to a decrease in solubility of oxygen in the polymer. All of the copolymers tested displayed similar oxygen diffusion coefficients. The decrease in solubility correlates with the decrease in Tg. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 934–942, 2003  相似文献   

9.
Poly(ethylene isophthalate‐co‐ethylene terephthalate) (PEIPET) copolymers of various compositions and molecular weights were synthesized by melt polycondensation and characterized in terms of chemical structure and thermal and rheological properties. At room temperature, all copolymers were amorphous and thermally stable up to about 400°C. The main effect of copolymerization was a monotonic increase of glass transition temperature (Tg) as the content of ethylene terephthalate units increased. The Fox equation accurately describes the Tg–composition data. The presence of ethylene terephthalate units was found to influence rheological behavior in the melt, with the Newtonian viscosity increasing as the content of ethylene terephthalate units increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 186–193, 2004  相似文献   

10.
Taking advantage of a melt polycondensation process, a series of copolyesters composed of pure terephthalate acid (PTA), ethylene glycol (EG), and 1,3‐propanediol (1,3‐PDO) were synthesized. The component, molecular weight, molecular weight distribution, and thermal properties of the copolymers were characterized. The results show that the contents of trimethylene terephthalate (TT) units in the resulting copolyesters are higher than PDO compositions in original diol. Oligomer content in the copolyesters varies with the compositions and attains a minimum value when the TT ingredient is 49.52 mol %. The glass transition temperature (Tg) of the copolyesters varies from 78.5°C for PET (polyethylene terephthalate) to 43.5°C for PTT (polytrimethylene terephthalate) and decreases monotonically with the components. The copolyesters are amorphous copolymers when TT content is in the range of 32.4–40.8 mol %, as calculated from the melting enthalpy (ΔHm) measured via differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1511–1521 2006  相似文献   

11.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
This article provided a convenient method to synthesize aliphatic polyesteramides mainly composed of alternating diester diamide units by polycondensation and chain extension. Two kinds of polyesteramide prepolymers were prepared through melt polycondensation from N,N'‐bis(2‐hydroxyethyl)oxamide and adipic acid or sebacic acid. Chain extension of them was conducted with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) and adipoyl biscaprolactamate as combined chain extenders. The chain extended polyesteramides (ExtPEAs) were characterized by IR, 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray scattering, tensile test, and dynamic thermomechanical analysis. The results showed that the ExtPEA(0, m)s were mainly constituted with the diester oxamide alternating units. They had Tm above 140.8°C and the initial decomposition temperature above 298.0°C. They crystallized in similar crystallites to Nylon‐66 and were thermoplastic materials with tensile strength up to 31.47 MPa. POLYM. ENG. SCI., 54:756–765, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

14.
Copoly(ethylene terephthalate–imide)s (PETI) were prepared by melt polycondensation of bis(2-hydroxyethyl)terephthalate (BHET) and imide containing oligomer, i.e., 4,4′-bis[(4-carbo-2-hydroxyethoxy)phthalimido]diphenylmethane(BHEI). The apparent rate of poly-condensation reaction was faster than that of homo poly(ethylene terephthalate) (PET) due to the presence of imide units. The PETI copolymers with up to 10 mol % of BHEI unit in the copolymer showed about the same molecular weight and carboxyl end group content as homo PET prepared under similar reaction conditions. The increase in Tg of copolymer was more dependent on molar substitution of BHEI than on substitution of BHEN, reaching 91°C with 8 mol % BHEI units in the copolymer from Tg = 78.9°C of homo PET. In the case of PETN copolymer, 32 mol % of bis(2-Hydroxyethyl)naphthalate (BHEN) units gave Tg of 90°C. The maximum decomposition temperature of PETI copolymer was about the same as that of homo PET by TGA analysis. The char yield at 800°C was higher than that of homo PET. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
New and effective approaches to the synthesis of 1,3‐bis(diphenylsilyl)‐2,2,4,4‐tetraphenylcyclodisilazane‐containing polydimethylsiloxanes ( P1 and P2 ) were developed. P1 was obtained by polycondensation of cyclodisilazane lithium salt and chloroterminated polydimethylsiloxane. P2 was produced by hydrosilylation of vinyl‐terminated cyclodisilazane and hydrogen‐terminated polydimethylsiloxane. The polycondensation completed quickly at room temperature, while the hydrosilylation was facile and did not require cumbersome air‐sensitive operations. P1 and P2 were characterized by Fourier transform infrared, nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis (TGA), and isothermal gravimetric analysis (IGA). TGA revealed the outstanding thermal properties of P1 and P2 with 5% weight loss temperatures (Td5) higher than 450°C. IGA proved their better thermal stability at 450°C for 800 min, compared to polydimethyldiphenylsiloxane. Dynamic mechanical analysis showed that silicone rubbers made from cyclodisilazane‐containing polydimethylsiloxanes could have a maximum tan δ value as high as 1.13 and had good prospects for damping material applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry  相似文献   

17.
New diimide–dicarboxylic acids, ie 4‐phenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis‐(4‐trimellitimidophenyl)pyridine, were synthesized by the condensation reaction of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis(4‐aminophenyl)pyridine with trimellitic anhydride in glacial acetic acid or dimethylformamide. The monomers were fully characterized by FT‐IR and NMR spectroscopies, and elemental analyses. A series of novel poly(amide–imide)s with inherent viscosities of 0.68–0.87 dl g?1 was prepared from the two diimide–diacids with various aromatic diamines by direct polycondensation. The poly(amide–imide)s were characterized by FT‐IR and NMR spectroscopies. The λmax data for the resulting poly(amide–imide)s were in the range of 260–292 nm. These polymers exhibited good solubilities in polar aprotic solvents. The 10 % weight loss temperatures are above 485 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Kosuke Tomita 《Polymer》1976,17(3):221-224
The rate parameters (p and d values) associated with the rate constants of propagation and thermal degradation reactions in the polycondensation process of bis(2-hydroxyethyl) terephthalate (BHET) in the presence of various metal compounds as catalysts at 283°C, calculated from the time dependence of the molecular weight of the formed polymer, were used to evaluate each metal compound in its catalytic activity. These logarithms of the p and d values were correlated by linear relationships (mountain-shaped) with the stability constants (log β1) of dibenzoyl methane (DBM) complexes of the corresponding metal species. Consequently, the stability constant of DBM complex of each metal species was found to be very useful in forecasting the catalytic activity of the metal compound. The compound of metal species with values of log β1 about 12 was most active as the catalyst on the propagation reaction and that of values about 11 was most active on the thermal degradation reaction.  相似文献   

19.
A novel dianhydride, trans‐1,2‐bis(3,4‐dicarboxyphenoxy)cyclohexane dianhydride (1,2‐CHDPA), was prepared through aromatic nucleophilic substitution reaction of 4‐nitrophthalonitrile with trans‐cyclohexane‐1,2‐diol followed by hydrolysis and dehydration. A series of polyimides (PIs) were synthesized from one‐step polycondensation of 1,2‐CHDPA with several aromatic diamines, such as 2,2′‐bis(trifluoromethyl)biphenyl‐4,4′‐diamine (TFDB), bis(4‐amino‐2‐trifluoromethylphenyl)ether (TFODA), 4,4′‐diaminodiphenyl ether (ODA), 1,4‐bis(4‐aminophenoxy)benzene (TPEQ), 4,4′‐(1,3‐phenylenedioxy)dianiline (TPER), 2,2′‐bis[4‐(3‐aminodiphenoxy)phenyl]sulfone (m‐BAPS), and 2,2′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]sulfone (6F‐BAPS). The glass transition temperatures (Tgs) of the polymers were higher than 198°C, and the 5% weight loss temperatures (Td5%s) were in the range of 424–445°C in nitrogen and 415–430°C in air, respectively. All the PIs were endowed with high solubility in common organic solvents and could be cast into tough and flexible films, which exhibited good mechanical properties with tensile strengths of 76–105 MPa, elongations at break of 4.7–7.6%, and tensile moduli of 1.9–2.6 GPa. In particular, the PI films showed excellent optical transparency in the visible region with the cut‐off wavelengths of 369–375 nm owing to the introduction of trans‐1,2‐cyclohexane moiety into the main chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42317.  相似文献   

20.
Three diimide‐diacids, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane ( I‐A ), 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]propane ( I‐B ), and 5,5′‐bis[4‐ (4‐trimellitimidophenoxy)phenyl]hexahydro‐4,7‐methanoindan ( I‐C ), were prepared by the azeotropic condensation of trimellitic anhydride with three analogous diamines. Three series of alternating aromatic poly(arylate‐imide)s, having inherent viscosities of 0.41–0.82 dL/g, were synthesized from these diimide‐diacids ( I‐A , I‐B , and I‐C ) with various bisphenols by direct polycondensation using diphenyl chlorophosphate and pyridine as condensing agents. All of the polymers were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and even in the less polar tetrahydrofuran. These polymers could be cast into transparent and tough films, which had strength at break values ranging from 73 to 98 MPa, elongation at break from 6 to 11%, and initial modulus from 1.6 to 2.2 GPa. The softening temperatures of the polymers were recorded at 145–248°C. They had 10% weight loss at a temperature above 450°C and left 35–51% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3818–3825, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号