首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
深部层状围岩结构强度具有各向异性特点,此类地层中修建盾构隧道,管片衬砌易受偏压作用,对结构安全构成挑战。开展层状围岩与盾构管片衬砌相互作用关系的相似模型试验研究,研究不同层理倾角下管片衬砌壁后围岩压力、管片衬砌内力和变形分布规律。研究结构表明:管片衬砌受力和变形特征受层理面控制明显,管片衬砌受力极不均匀,弯矩、轴力和变形呈现非对称分布;管片衬砌壁后围岩压力最大值集中在强度最弱的层理面法线方向,该方向上管片衬砌的弯矩最大,轴力最小,变形最大;层理倾角对管片衬砌的受力和变形影响显著,层理倾角不仅影响管片衬砌壁后围岩压力分布形状还影响其量值大小;均质地层中,管片衬砌裂缝主要出在封顶块接头处和其他环向接头处,层状地层中管片衬砌裂缝出现位置受接头位置影响减弱,而受层理倾角影响明显,管片衬砌裂缝出现位置主要集中在层理面法向。研究结果对层状围岩中修建盾构隧道的支护结构型式设计具有一定参考价值。  相似文献   

2.
文章以在建郑万高铁某层状软岩隧道为研究对象,应用ABAQUS有限元软件,建立带有节理材料模型的二维隧道模型进行计算分析,并结合现场量测结果,得到围岩和衬砌的受力变形特征。结果表明,层状软岩中的隧道会产生明显偏压效应,隧道反倾侧的围岩位移和衬砌受力普遍大于顺倾侧对应位置;层面倾角由0°增加到90°过程中,围岩的位移和衬砌的应力均呈现逐渐增大的趋势,隧道的偏压作用由弱变强再变弱,倾角45°时偏压作用最显著。  相似文献   

3.
汶川地震中软岩隧道洞口段出现衬砌开裂、错台、仰拱隆起等震害。为了分析软岩隧道洞口段震害机理,地震响应与隧道埋深的关系,通过有限元软件分别建立隧道埋深15、20、25m的数值模型,与汶川地震中软岩隧道洞口段的震害进行对比。结果表明:在水平地震波作用下,隧道整体加速度差别不大,拱腰与拱脚加速度放大系数较大,而拱顶与拱肩的加速度放大系数较小;隧道整体水平位移较小,随着埋深增加,隧道的水平位移减小,但是隧道不会因为强制位移而发生破坏;隧道衬砌的最大轴力出现在左拱肩与右拱脚,最大弯矩产生在拱脚,隧道埋深增加,衬砌的最大轴力与最大弯矩均减小。  相似文献   

4.
为了揭示隧道穿越断层期间结构力学响应特性,通过室内模型试验研究断层倾角为45°、60°、75°时采用台阶法进行开挖施工的围岩压力、围岩位移和衬砌应力变化情况。结果表明:断层倾角越大,围岩压力值越高,断层倾角为75°、60°时围岩压力分别为45°的1.169倍、1.089倍;拱部围岩压力影响范围达1.0倍洞径,拱腰、边墙处影响范围为0.5倍洞径;断层倾角越大,围岩径向位移值越高,断层倾角为75°、60°时径向位移达45°的1.112倍、1.057倍;拱部围岩位移影响范围达1.0倍洞径,拱腰、边墙处影响范围为0.5倍洞径;由于存在断层结构,隧道开挖后形成较大松散压力,衬砌结构呈“扁坦式”受力状态,边墙位置衬砌应力最大,拱顶、拱腰处次之;断层倾角越大,衬砌应力值越高,第一施工循环拱顶位置衬砌应力在断层倾角75°、60°时分别为45°的1.176倍、1.079倍,拱腰处为1.187倍、1.089倍,边墙处为1.169倍、1.082倍;第二循环拱顶位置衬砌应力在断层倾角75°、60°时分别为45°的1.136倍、1.067倍,拱腰处为1.158倍、1.075倍,边墙处为1.156倍、1.077倍...  相似文献   

5.
隧道衬砌的设计是隧道设计的重点,隧道衬砌的设计,不仅要保证其安全性外,还需更加经济。为保证隧道衬砌结构安全的前提下降低成本,结合算例,采用地层结构法,考虑荷载分配系数,计算衬砌结构的水平及竖向荷载。再结合ANSYS软件,进而分析出衬砌结构的位移、弯矩、轴力、剪力等力学特征参数。得到:围岩荷载作用下,隧道顶部及仰拱中部产生较大变形,其中隧道顶部位移最大;仰拱中部处弯矩最大,拱脚位置弯矩也较大。  相似文献   

6.
《土工基础》2016,(5):580-583
软岩隧道围岩蠕变特性会对隧洞的长期稳定性产生重要影响。以厦门岩内隧道为研究对象,对取自现场的全风化花岗岩进行了一系列三轴蠕变试验研究,建立了适用于该岩石的幂指数蠕变模型,通过对试验数据的分析得到了隧道围岩的蠕变参数。将全风化花岗岩蠕变模型嵌入到有限元程序中,对岩内隧道的长期稳定性进行了分析。结果表明,由于围岩的蠕变特性,隧道建成2年内围岩的变形较大,但逐渐趋于稳定。隧道运营10年后,围岩变形导致的衬砌破坏区主要集中在拱脚部位,面积较小,不会对隧道的长期稳定性产生影响。  相似文献   

7.
寒区季节性冻融导致围岩破碎层和松动圈的应力应变空间重构,为描述冻融影响下隧道二衬沿断面横向偏转的渐近演化,以吉林老爷岭寒区隧道入口和中段两个代表性断面的拱腰、拱墙390 d现场倾角变形数据为基础,结合衬砌开裂及偏转力学性态特征,应用数值模拟试验,综合分析正温、负温、冻季、融季4时期衬砌渐近性偏转、围岩破碎层及松动圈演化、衬砌应力应变特征等关键问题。研究表明:隧道入口段偏转随季寒交替变化显著,左拱墙和左拱腰测点倾角变化分别呈"倒V"及"下凹"状,偏转在融季响应滞后,在冻季响应超前,在冻融期则有"突变"趋势;而隧道中段受到的影响总体比入口处小,右拱腰在冻季、正温期有不同程度的波动偏转,左拱腰倾角则呈现"上凹"变化,其在融季有滞后偏转现象;计算松动圈直径满足冻融期负温期正温期,且隧道入口隧道中段,通过数值模拟得到塑性区轮廓计算松动圈,可见在衬砌冻融期的伤害比在其他时期更显著,应防范冻融期温度变化带来的衬砌偏转风险。  相似文献   

8.
矿山法修建的山岭隧道有的情况下对地下水采取排导式处理方案。当衬砌背后来水量超出排水系统能力时,将引起衬砌背后外水压增高,甚至导致隧道衬砌结构破坏。自行研制了隧道衬砌外水压力模拟加载试验装置,该装置通过形成负压环境,利用隧道结构模型内外气压差来实现外水压的模拟。基于隧道-地层复合模拟试验平台,开展了外水压下大断面公路隧道衬砌结构受力特性的室内加载模型试验。结果表明:衬砌结构在水土压力共同作用下,轴力呈锥形分布,拱脚轴力大于仰拱和拱部;弯矩呈蝴蝶型分布,拱脚处承受外弯矩,仰拱及拱顶承受内弯矩;轴力、弯矩随水压增加大致呈线性增大,偏心距逐渐减小,拱脚位置具有最大的偏心距,为外水压下隧道衬砌结构受力的最不利位置;依托隧道工程三车道及加宽带衬砌结构产生渗透性裂缝的外水压力分别为330kPa和420kPa,开裂裂缝主要出现在左右拱脚区域的外侧及仰拱内侧,为受拉开裂破坏,且随着外水压的增加,裂缝的渗透性急剧增大。此研究可为大断面公路隧道排水型衬砌在外水压力作用下结构安全评估提供参考。  相似文献   

9.
深埋软岩隧洞围岩蠕变特性将会对隧洞的长期稳定性产生重要影响。以巴基斯坦N-J水电站深埋引水隧洞的泥质粉砂岩为研究对象,通过室内的三轴蠕变试验,建立了适用于该岩石的幂指数蠕变模型。通过对大变形段围岩变形监测结果的反演分析,得到了围岩体的蠕变参数,并基于此对引水隧洞软岩大变形段的长期稳定性进行了分析。结果表明,引水隧洞运营10年后,围岩的拱顶下沉增量为20.3mm,水平变形增量为18.1mm,衬砌的受力主要以压应力为主,最大压应力达到了63.4 MPa,主要出现在拱顶和拱腰部位,出现了局部的受压破坏,为保证隧洞安全,需在拱顶和拱腰部位进行加强支护。  相似文献   

10.
寒区季节性冻融导致围岩破碎层和松动圈的应力应变空间重构,为描述冻融影响下隧道二衬沿断面横向偏转的渐近演化,以吉林老爷岭寒区隧道入口和中段两个代表性断面的拱腰、拱墙390 d现场倾角变形数据为基础,结合衬砌开裂及偏转力学性态特征,应用数值模拟试验,综合分析正温、负温、冻季、融季4时期衬砌渐近性偏转、围岩破碎层及松动圈演化、衬砌应力应变特征等关键问题。研究表明:隧道入口段偏转随季寒交替变化显著,左拱墙和左拱腰测点倾角变化分别呈“倒V”及“下凹”状,偏转在融季响应滞后,在冻季响应超前,在冻融期则有“突变”趋势;而隧道中段受到的影响总体比入口处小,右拱腰在冻季、正温期有不同程度的波动偏转,左拱腰倾角则呈现“上凹”变化,其在融季有滞后偏转现象;计算松动圈直径满足冻融期>负温期>正温期,且隧道入口>隧道中段,通过数值模拟得到塑性区轮廓>计算松动圈,可见在衬砌冻融期的伤害比在其他时期更显著,应防范冻融期温度变化带来的衬砌偏转风险。  相似文献   

11.
上覆水平煤层采空区衬砌受荷模型试验研究   总被引:1,自引:0,他引:1  
隧道近接上覆水平采空区地层施工易扩大上覆围岩松动范围,增大松动荷载,为探明隧道衬砌结构受荷特性,采用室内相似模型试验量测了上覆水平煤层采空区地层隧道二次衬砌结构内力(轴力、弯矩),分析了不同边界压力作用下位移、轴力和弯矩的变化情况和特定压力下间距对二次衬砌受力的影响。结果表明:上覆采空区对洞周位移和二衬内力造成了一定影响,采空区底板与隧道间距越小,位移越大,当竖向压力为1000 k Pa时,与无采空区工况相比,0.5D工况最大位移增加93.73%,1.0D工况增加27.90%;弯矩和轴力的增加越明显,当竖向压力为500 k Pa时,与无采空区工况相比,间距0.5D工况最大弯矩增加139.68%,间距1.0D工况最大弯矩增加34.39%,采空区的存在导致轴力分布形态变化较大,间距0.5D工况平均轴力增加78.39%,间距1.0D工况平均轴力增加37.81%;最大偏心距出现在仰拱部位,承载能力相对较低,是隧道主体结构的薄弱环节;二次衬砌仰拱位置最先开裂,煤层采空区对裂缝展开顺序有一定影响。  相似文献   

12.
浅埋隧道围岩的质量普遍较低,整体稳定性差,隧道震害表明强震作用下浅埋隧道极易发生震动破坏。通过开展V级围岩条件下浅埋隧道在小震下的震动响应和逐级加载下的震动垮塌振动台试验,研究了小震作用下围岩加速度沿地层的分布、衬砌结构的内力变化和围岩内部的水平位移变化规律,强震作用下衬砌结构裂缝开展和围岩震动垮塌。结果表明:围岩加速度随距地表距离的减小而增加,地表加速度约为拱顶处加速度的1.63倍,相同高度平面内靠近隧道的围岩振动具有一定的加强;隧道拱顶围岩内部的水平位移大约是拱腰围岩内部的1.23倍,围岩内部位移随着远离隧道而逐渐减小,随着震动烈度的增加而不断增加;隧道拱顶上方垮塌区形状近似漏斗,震动引起隧道衬砌结构拱脚处的轴力和弯矩变化最大,且拱肩和拱脚处裂缝分布最多,应加强拱肩和拱脚处结构的抗震性能。  相似文献   

13.
隧道工程中因软岩的膨胀性而诱发的隧道支护结构失稳现象十分普遍。以膨胀性软岩导致隧道围岩结构非均匀受力为出发点,研究膨胀性软岩隧道支护结构的受力特性,试图建立一种膨胀性软岩隧道支护结构受力缓释方法。在初期支护与二次衬砌之间植入团粒膨润土作为缓冲层,开展室内缩尺物理模型试验。通过MIDAS GTS NX软件建立三维数值模型,对比分析加入缓冲层前、后的膨胀性软岩隧道支护结构的受力特性。根据隧道力学理论推导构建膨胀性软岩隧道支护结构受力缓释模型,得到缓释系数表达式,据此验证膨胀性软岩隧道支护结构受力缓释方法的实用性。研究结果表明:加入缓冲层后,支护结构的变形及围岩膨胀力较加入前明显变小,变形均呈拱顶下沉、拱底向上隆起、拱腰向内收敛的特征;缓冲层通过对抗、弱化、传递以减小作用于支护结构上的围岩膨胀力,使单一的集中受力体系转变为均布荷载体系;通过缓释模型计算得出缓释系数为30%~50%,表明在初期支护与二次衬砌之间植入团粒膨润土作为缓冲层可以起到缓释膨胀力的作用,可为解决软岩隧道膨胀问题提供参考。  相似文献   

14.
针对天津滨海地区盾构隧道衬砌结构,采用大型有限元软件ABAQUS建立三维地层-结构模型,考虑隧道管片材料非线性特征,利用混凝土材料的塑性损伤本构模型,研究地层和隧道结构相互作用后隧道管片结构内力分布与变形特征,以及隧道管片受拉和受压损伤情况。最后,研究不同地质条件和超载作用对隧道管片结构的影响。数值分析结果表明:隧道管环横截面变形表现为水平向外扩张、竖向压缩的特点,呈现“横鸭蛋”形状;隧道管环拱顶轴压力最小,拱腰轴压力最大;管片外侧受拉时最大弯矩位于拱腰,内侧受拉时最大弯矩位于拱顶;受拉和受压损伤分布均集中在拱底附近,其中管环受压损伤面积比受拉损伤面积大;地质条件越好,变形随轴线方向变化越均匀,轴力和弯矩、隧道结构竖向位移、横截面收敛变形,以及管环损伤面积与损伤程度越小。研究结果以期为进一步探讨隧道衬砌结构的变形性能与损伤分布提供参考。  相似文献   

15.
高能场体环境下大变形、岩爆等隧道灾害屡见不鲜,该类环境的主要特征为高地应力,隧道的地应力条件将会影响围岩变形规律和结构内力,开挖工法的选择将直接影响隧道工程的效率和安全。已有研究在工法模拟时的地应力条件大多根据隧道埋深计算,与实际地应力条件相差较大,导致结果过于片面。因此,本文基于地应力实测结果,采用有限差分软件对高地应力软岩隧道情况下三台阶法、CD法、CRD法施工的围岩变形规律及结构安全性进行分析研究,结合工程现场监测结果,验证结论的正确性。分析结果表明:中老铁路高地应力环境表现为水平最大主应力大于竖向最大主应力,二者比值在1.15~1.71之间;CRD法对高地应力软岩环境下围岩变形的控制效果最佳,CD法其次;高地应力软岩环境下二次衬砌轴力整体分布均匀,仰拱和拱脚部位的弯矩较大,安全系数小;CRD法情况下的围岩压力整体最小,对于围岩稳定最有利,CD法次之,三台阶法的围岩压力最大。  相似文献   

16.
衬砌背后空洞影响下隧道结构裂损规律试验研究   总被引:2,自引:0,他引:2  
衬砌背后空洞的存在严重影响了围岩与衬砌之间的相互作用,极易引起衬砌结构破损并直接影响到运营安全。通过模型试验,系统研究了拱顶与拱肩背后存在双空洞条件下隧道结构裂损演化过程及衬砌结构轴力和弯矩的变化规律。模型试验结果表明:(1)衬砌背后双空洞的存在,严重影响隧道结构的受力状态,易导致衬砌结构承载力不足;(2)拱顶与右拱肩背后存在双空洞条件下衬砌裂缝出现的顺序为:仰拱内表面裂缝→空洞间衬砌内表面裂缝→拱肩空洞右侧衬砌外表面裂缝→拱顶空洞左侧衬砌内表面裂缝→左拱脚衬砌外表面裂缝→右拱腰衬砌外表面裂缝;(3)空洞尺寸变化显著改变了衬砌内力分布,空洞尺寸的增加,引起两空洞间衬砌结构轴力减小而弯矩增大,使两空洞间的衬砌结构破坏程度更严重;(4)衬砌背后空洞的位置及数量对隧道结构裂损过程有较大影响,衬砌背后存在双空洞时衬砌裂缝的传播过程更复杂。研究成果可为衬砌背后多空洞影响下衬砌裂缝病害的防治和修复提供参考。  相似文献   

17.
 盾构隧道施工引起的环境土工效应分析一直是城市轨道交通安全控制的关键课题。由于目前该领域较少考虑隧道衬砌与土体相互作用带来的影响,尤其是较少针对衬砌应力进行分析,由此提出带衬砌浅埋隧道开挖受非对称收敛变形影响的地层变形计算方法;同时考虑地层与衬砌之间的非对称收敛协调变形模式,建立带衬砌隧道开挖的Airy应力函数解析解答。通过实例研究,得到带衬砌隧道非对称变形模式下的地层沉降和水平位移曲线,并与实测数据进行对比验证;通过参数分析,获取土体和衬砌的材料特性、隧道几何特性以及隧道埋深等主要参数对浅埋隧道开挖地层变形和衬砌应力的影响规律。结果表明:非对称收敛变形模式对地层位移的影响明显,在此条件下得到的沉降槽和水平位移曲线与实测值吻合较好,地表最大沉降值更接近于实际;隧道半径或土层硬度对土体沉降最大值有较大影响,减小半径和硬化土层对减少土体沉降量效果显著,而衬砌几何参数的改变对沉降量的影响不大;衬砌轴力和弯矩整体关于90°/270°轴即隧道竖轴线严格对称,其中轴力沿圆周呈倒“8”字分布,而弯矩随着k值的增大,沿圆周方向由“8”字形向“0”字形过渡,最大轴压力和最大负弯矩发生在拱腰位置,土体侧压力系数k的取值对衬砌轴力和弯矩的分布和大小影响明显。分析成果可为正确预估软土浅埋盾构开挖变形提供一定的理论依据。  相似文献   

18.
详细研究了隧道拱脚处裂纹对围岩稳定性及破坏模式的影响,裂纹分两组进行设置:一是裂纹以拱脚交界点为圆心逆时针方向分布在A(0°a≤90°),B(90°a≤180°)及C(180°a≤270°)区域,且与隧道底板面成夹角a;二是裂纹倾角a为127°,与隧道跨度成不同裂纹长度比β。采用物理模型试验和数值模拟对比分析拱脚裂纹的不利因素,随后选择砂岩材料制作隧道模型试件进行室内试验,得到裂纹因素对围岩强度的影响。数值模拟采用有限元程序分别计算裂纹尖端的应力强度因子与围岩损伤演化云图。通过两者对比论证可以得到如下结论:(1)裂纹在隧道拱脚位置处成不同倾角a时,裂纹分布区域的危害程度可依次排列为BCA;(2)裂纹倾角a在120°~135°时,裂纹对隧道整体的稳定性影响最大;(3)在双轴压缩载荷作用下,围岩的破坏行为主要是裂纹尖端与边墙的拉剪破坏及局部的拉伸破坏;(4)裂纹长度比β对围岩整体稳定性影响表征为线性反比例函数关系。  相似文献   

19.
结合江西某公路运营隧道病害问题,通过对隧道衬砌裂缝、衬砌渗漏水,衬砌厚度及二衬轮廓线等检测结果进行总结,从地质、设计和施工方面分析其各自病害产生的原因,并对不同围岩类型的危险断面进行结构安全验算,验算发现衬砌裂缝和衬砌厚度对隧道顶拱和拱肩的轴力、弯矩和安全系数影响较大,顶拱和拱肩部位得出的安全系数小于规范要求。根据病害原因分析和结构安全计算的结果,提出针对性治理建议。  相似文献   

20.
杨江峰 《建筑机械》2023,(12):67-72
为研究管棚支护在软弱围岩中对隧道的影响,文章依托亚曲滩隧道穿越软弱围岩的浅埋暗挖工程进行模拟分析。研究结果表明:拱顶管棚挠度沿隧道纵向逐渐减小,洞口位置处挠度较大,末端挠度最小。拱腰管棚的挠度值相对较小,约为拱顶管棚挠度的1/2,且变形由两侧拱腰向拱顶递增。拱顶管棚轴力沿隧道纵向先受压后受拉,拱腰管棚轴力也是先受压后受拉,但拱顶轴力约为拱腰轴力的两倍,并且轴力由拱顶向拱腰两边递减。随着管棚直径的增大,隧道拱顶、拱底和拱腰逐渐减小。管棚直径对拱顶沉降的控制效果最好,其次是拱底,最后是拱腰。随着直径的增大,隧道拱顶、拱底受直径的影响逐渐减弱,变形速率逐渐下降。间距的增大导致隧道拱顶、拱底的变形增加,变形速率逐渐上升。管棚加固区厚度的增大使得隧道拱顶、拱底和拱腰的变形逐渐减小。管棚加固区厚度增大对拱顶沉降的控制效果较好,其次是拱底,最后是拱腰。在管棚加固时,应特别关注隧道拱顶的情况。该研究结果可为类似工程提供一定的借鉴作用,对隧道结构的安全有积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号