首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of crystal size distribution (CSD) is investigated in a 1.5 L laboratory cooling KCl crystallizer using fines dissolution rate as the manipulated variable. The controlled variable was either the fines suspension density in the fines withdrawal loop, measured by an innovative double‐sensor turbidity meter manufactured in‐house, or the chord length distribution (CLD) measured by the Focused Beam Reflectance Measurement (FBRM®) probe (model: Par‐Tec® 100, Lasentec®, Redmond, WA). It was shown that effective control of mean crystal size and fines suspension density in the presence of setpoint and disturbance changes is feasible with both control schemes. The double sensor turbidity sensor proved to be very rugged even in the presence of insoluble clay background particles. The FBRM® probe was more sensitive and capable of detecting particle breakage and flocculation.  相似文献   

2.
In this paper, the theory on the translation of a measured chord length distribution (CLD) into its particle size distribution (PSD), which was developed in the first part of this study [Li and Wilkinson, 2005. Determination of non-spherical particle size distribution from chord length measurements. Part 1: theoretical analysis. Chemical Engineering Science 60, 3251-3265], has been validated using experimental results. CLDs were measured using the Lasentec focused beam reflectance measurement (FBRM) with three different materials, spherical ceramic beads and non-spherical plasma aluminium and zinc dust particles. Meanwhile, the particle shape and PSD of each material were also investigated by image analysis (IA). Comparison of the retrieved PSDs with the measured PSDs by IA shows that the PSD can be retrieved from a measured CLD successfully using the proposed iterative nonnegative least squares (NNLS) method based on the PSD-CLD model.  相似文献   

3.
Analysis of FBRM measurements by means of a 3D optical model   总被引:1,自引:0,他引:1  
Continuous process monitoring is desirable for many particulate processes such as the crystallization of active pharmaceutical ingredients. Only an in-line measurement technique can achieve such a continuous monitoring.A popular in-line measurement technique, which can be applied without dilution, is the focussed beam reflectance measurement (FBRM). However, FBRM is at this point mainly used for qualitative measurements. The measured chord length distribution is different from a particle size distribution. For a quantitative measurement a sound understanding of the measurement principle is necessary. In this paper, an optical model of the FBRM probe and a three-dimensional simulation of the measurement are presented.A three-dimensional particle field is generated with a Monte-Carlo approach. The back scattered light intensity is calculated as a function of the position of the laser beam with respect to this particle field. A vector of scattering intensities is obtained for a given laser path. This vector is processed with the simulated electronics of the Lasentec FBRM system. The output of this processing step is a chord length distribution which can be compared to the output of the Lasentec FBRM system.Simulation studies with mono-disperse polystyrene particles of different sizes and concentrations are conducted and compared to measurements of a Lasentec D600L FBRM probe. With the presented model yet unexplained massive over-estimation of small particles and concentration-dependent changes in the chord length distribution can be described.  相似文献   

4.
High‐intensity ultrasound, is sought as a means to break particles. A horn‐type ultrasonic transducer is used to apply HIU into a suspension of alumina particles causing breakage to occur. The rate of particle breakage is monitored continuously via in‐line laser‐based particle chord length measurement. Kapur function analysis is used to arrive at the grinding kinetics under variations of ultrasonic power, particle loading, temperature of the suspension and particle size. The first Kapur function increases monotonically with increase in input ultrasonic power. Increasing temperature also increases the first Kapur function but an optimum in the range investigated (10–50°C) is observed near 25°C. An exponential relation is found for the variation of first Kapur function with particle size, this being unique to ultrasound‐mediated particle breakage. The breakage mechanism is attributed mainly to particle abrasion. Different breakage mechanisms are observed at different temperatures. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

5.
The reaction of a suspension of solid particles in a rapidly‐heated oxidizing gas is relevant to metalized explosives and propellants, as well as to combustion of solid fuel‐particle suspensions in premixed‐gaseous‐fuel clouds encountered in accidents within the mining and process industries. A simplified model is considered, using a constant‐volume approximation, which assumes that non‐volatile particles react heterogeneously via a one‐step surface reaction. The resulting unified particle reaction rate includes both kinetic and diffusive reaction resistances. It is shown that the onset of the chemical reaction in a rapidly heated particulate suspension may occur by two different physical mechanisms. The first mechanism, realized in a dilute suspension of particles, is defined by the ignition of a single particle, i.e., by the critical phenomenon associated with the rapid transition from a kinetically‐ to diffusively‐limited reaction regime. The second mechanism dominates the reaction onset in a dense particulate suspension and occurs in a similar manner to the reaction onset in a rapidly‐heated homogeneous gas mixture, where the highly‐activated reaction occurs in an explosion‐like manner after some time delay and preheating. Unlike the single particle ignition phenomenon, the second mechanism lacks criticality and is not limited to particles above a certain size. The interplay between these two reaction‐onset mechanisms leads to a nontrivial dependence of the total reaction time on the particle size and solid‐fuel concentration within the suspension.  相似文献   

6.
Experimental data on chord length distributions and growth rate during methane hydrate formation in water‐in‐oil emulsions were obtained in a high pressure stirring reactor using focused beam reflectance measurement and particle video microscope. The experiments were carried out at 274.2 K for 10–30% water cuts and agitation rates ranging from 200 to 500 rpm initially at 7.72 MPa. Rapid growth was accompanied by gradually decrease in rate. Free water was observed to become depleted during rapid growth while some water remained encapsulated inside hydrate layers constituting a mass transfer barrier. The apparent kinetic constants of methane hydrate formation and free‐water fractions were determined using a newly developed kinetic model independent of the dissolution rate at the gas–oil interface. It was illustrated that continued growth depends on distribution and transfer of water in oil‐dominated systems. This perception accords with observations of hydrate film growth on suspended water droplet in oil and clarifies transfer limits in kinetics. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1010–1023, 2017  相似文献   

7.
Miniaturized detection systems for nanometer-sized airborne particles are in demand, for example in applications for onboard diagnostics downstream particulate filters in modern diesel engines. A soot sensor based on resistivity measurements was developed and characterized. This involved generation of soot particles using a quenched co-flow diffusion flame; depositing the particles onto a sensor substrate using thermophoresis and particle detection using a finger electrode structure, patterned on thermally oxidized silicon substrate. The generated soot particles were characterized using techniques including Scanning Mobility Particle Sizer for mobility size distributions, Differential Mobility Analyzer—Aerosol Particle Mass analyzer for the mass–mobility relationship, and Transmission Electron Microscopy for morphology. The generated particles were similar to particles from diesel engines in concentration, mobility size distribution, and mass fractal dimension. The primary particle size, effective density and organic mass fraction were slightly lower than values reported for diesel engines. The response measured with the sensors was largely dependent on particle mass concentration, but increased with increasing soot aggregate mobility size. Detection down to cumulative mass as small as 20–30 μg has been demonstrated. The detection limit can be improved by using a more sensitive resistance meter, modified deposition cell, larger flow rates of soot aerosol and modifying the sensor surface.  相似文献   

8.
The migration of particles in free surface flows using the diffusive flux model was investigated. As the free‐surface flows, a planar jet flow and a slot coating flow were chosen. The suspension was assumed to be a Newtonian fluid with a particle concentration dependent viscosity. The governing equations were solved numerically by the finite volume method, and the free‐surface problem was handled by the volume of the fraction model. The result shows that even though the velocity profile is fully developed and becomes flat, the particle distribution never reaches the uniform distribution for both of the cases. It is also shown that the die swell of the free jet is reduced compared to the Newtonian fluid and when the particle loading is 0.5, die contraction is observed. The change in die swell characteristics is purely due to particle migration since the suspension model does not show normal stress differences. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

9.
A recently proposed model to determine particle-size distributions (PSDs) from chord length measurements has been applied to different particle morphologies, namely compact, platelet- and rod-shaped particles. To study these systems, chord length distributions (CLDs) were measured at varying particle size and solids concentration for each compound and were subsequently utilized to determine the system-specific parameters. Each model was successfully applied to its respective compound such that the experimental PSDs and model predictions were in good agreement. Moreover, the effect of other variables such as agitation rate and solvent composition was investigated and found to be negligible for the specific systems tested. Finally, potential model optimizations of the general model construct have been studied. Two variants of the CLD compression step, namely principal component analysis and a geometric model have been considered as surrogate models. However, neither of these approaches yielded superior results than the previously proposed approach.  相似文献   

10.
A procedure for the calculation of chord length distributions (CLD) of populations of rigid and opaque particles of any size and shape distribution is given. It combines the capabilities of a virtual reality renderer to create 2D projections of particles and of an image analysis software which determine their chord lengths. The procedure has been validated on simple shapes (spheres, ellipsoids, parallelepipeds, cuboids, uniform polyhedra) that can be combined to simulate agglomerates or twinned crystals. The procedure has been used to discuss the experimental results obtained on gibbsite particles in different size ranges and to compare the mean chord length to the average particle size.  相似文献   

11.
12.
The purpose of this study was to investigate the effect of solvent type on the solidification rate of ethyl cellulose (EC) microparticles and particle size/distribution of emulsion droplets/hardened microparticles during the solvent evaporation process using focused beam reflectance measurement (FBRM). EC microparticles were prepared with a water‐in‐oil‐in‐water solvent evaporation method using various solvents, including dichloromethane, dichloromethane–methanol (1:1), ethyl acetate and chloroform. The particle size/distribution of the emulsion droplets/hardened microparticles was monitored using FBRM. The morphology of EC microparticles was characterized using scanning electron microscopy (SEM). The transformation of the emulsion droplets into solid microparticles for all solvents occurred within the first 10–90 min. The square weighted mean chord length of EC microparticles prepared using chloroform was smallest, but the chord count was not the highest. The chord length distribution (CLD) measured by FBRM showed that a larger mean particle size gave longer CLD and a lower peak of particle number. SEM data revealed that the morphology of microparticles was influenced by the type of solvent. FBRM can be employed for online monitoring of the shift in the microparticle CLD and detect transformation of emulsion droplets into solid microparticles during the solvent evaporation process. The microparticle CLD and transformation process were strongly influenced by solvent type. © 2017 Society of Chemical Industry  相似文献   

13.
牛犁  刘梦溪  王海北 《化工学报》2022,73(6):2622-2635
在一套流化床冷模实验装置中对黄沙颗粒和黄沙-硅微粉 (20 μm)混合颗粒进行实验。测量固含率时间序列信号并进行统计分析,提出并建立复杂光纤脉动信号的解耦方法,实现稠密气固流中介尺度流动结构的准确识别。基于统计矩一致性原理提出气泡阈值的计算方法,通过遍历法确定气泡阈值。对气泡阈值变化规律进行分析,发现加入细颗粒有助于改善流化质量,随表观气速的增加,气泡阈值减小。对气泡、乳化和聚团三相的相分率进行统计,发现在黄沙颗粒中加入少量(5%,质量分数)细颗粒能够显著改善流化质量,细颗粒添加量过多时(10%),对流化质量的改善将减弱。对气泡的流体力学特性进行分析,发现加入10%硅微粉后,气泡弦长增大,频率降低,速度略有降低。对颗粒聚团流体力学特性进行分析,发现随硅微粉含量增加,表观气速对聚团速度的影响减弱,聚团弦长略有减小。加入5%硅微粉后,颗粒聚团的出现频率较小且径向上分布均一。加入10%硅微粉后,聚团频率有所增大,说明加入过多硅微粉会促进聚团的形成。  相似文献   

14.
《分离科学与技术》2012,47(12):1881-1890
In-situ Attenuated total reflectance Fourier transform infrared (ATR-FTIR), focused beam reflectance measurement (FBRM) and particle video microscope (PVM) have been used simultaneously in this work to monitor the concentration, supersaturation, chord length distribution, and crystal habit, respectively, during a cooling crystallization process of Methyprednisolone Hemisuccinate (MPHS) from ethanol system. We developed a new calibration method based on peak ratios for the assessment of the concentration, solubility, and supersaturation in the 20–60°C temperature range. The crystallizations were conducted at two concentrations (7.5 and 9.5% w/w) with three different cooling rates (0.3, 0.5, and 0.7 K/min). The lower concentration was chosen within the constructed calibration range while the higher one was outside the calibration range and it was used to examine the extrapolating and predicting ability of the constructed calibration curves. The metastable zone widths (MSZW), supersaturation at nucleation, and the number of fine particle chord length of MPHS were all increased with the cooling rate, while the number of the larger chord length decreased with the increasing of the cooling rate.  相似文献   

15.
Conventional gravitational wet scrubbers, which generally perform removal of fine particles with low efficiency, cannot meet new standards for pollution emissions. One way of improving the collection efficiency of fine particles is to impose additional electrostatic forces upon particles by means of particle‐charging, or droplet‐charging, or even opposite‐charging of particles and droplets. A Monte Carlo method for population balance modeling is presented to describe the particle removal processes of gravitational wet scrubbers with electrostatic enhancement, in such a way that the grade collection efficiency and particle size distribution are calculated quantitatively. Numerical results show that, the grade collection efficiency of submicron particles is only ca. 5 % in conventional wet scrubbers. However, it reaches ca. 25 % in particle‐charging wet scrubbers, ca. 70 % in droplet‐charging wet scrubbers, and even above 99 % in opposite‐charging wet scrubbers. Furthermore, population balance modeling is used to optimize the operational parameters of the droplet‐charging wet scrubbers by means of the quantitative comparison of the grade collection efficiency. It is found that the operational parameters that are beneficial to the high‐efficiency removal of fine particles are faster gas velocity, slower droplet velocity, larger liquid‐to‐gas flow ratio, larger charge‐to‐mass ratio of droplets, smaller geometric mean diameter and smaller geometric standard deviation of droplets.  相似文献   

16.
We investigate in this article the macroscopic behavior of sheared suspensions of spherical particles. The effects of the fluid inertia, the Brownian diffusion, and the gravity are neglected. We highlight the influence of the solid‐phase inertia on the macroscopic behavior of the suspension, considering moderate to high Stokes numbers. Typically, this study is concerned with solid particles O (100 μm) suspended in a gas with a concentration varying from 5% to 30%. A hard‐sphere collision model (with elastic or inelasic rebounds) coupled with the particle Lagrangian tracking is used to simulate the suspension dynamics in an unbounded periodic domain. We first consider the behavior of the suspension with perfect elastic collisions. The suspension properties reveal a strong dependence on the particle inertia and concentration. Increasing the Stokes number from 1 to 10 induces an enhancement of the particle agitation by three orders of magnitude and an evolution of the probability density function of the fluctuating velocity from a highly peaked (close to the Dirac function) to a Maxwellian shape. This sharp transition in the velocity distribution function is related to the time scale which controls the overall dynamics of the suspension flow. The particle relaxation (resp. collision) time scale dominates the particulate phase behavior in the weakly (resp. highly) agitated suspensions. The numerical results are compared with the prediction of two statistical models based on the kinetic theory for granular flows adapted to moderately inertial regimes. The suspensions have a Newtonian behavior when they are highly agitated similarly to rapid granular flows. However, the stress tensors are highly anisotropic in weakly agitated suspensions as a difference of normal stresses arises. Finally, we discuss the effect of energy dissipation due to inelastic collisions on the statistical quantities. We also tested the influence of a simple modeling of local hydrodynamic interactions during the collision by using a restitution coefficient which depends on the local impact velocities. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

17.
Fairly uniform microspheres of poly(styrene‐co‐methyl methacrylate) were prepared by employing a microporous glass membrane [Shirasu porous glass (SPG)]. The single‐step SPG emulsification, the emulsion composed mainly of monomers, hydrophobic additives, and an oil‐soluble initiator, suspended in the aqueous phase containing a stabilizer and inhibitor, was then transferred to a reactor, and subsequent suspension polymerization followed. The droplets obtained were polymerized at 75°C under a nitrogen atmosphere for 24 h. The uniform poly(styrene‐co‐methyl methacrylate) microspheres with diameters ranging from 7 to 14 μm and a narrow particle‐size distribution with a coefficient of variation close to 10% were prepared by using SPG membrane with a pore size of 1.42 μm. The effects of the crosslinking agent and hydrophobic additives on the particle size, particle‐size distribution, and morphologies were investigated. It was found that the particle size decreased with a narrower size distribution when the additives were changed from long‐chain alkanes to long‐chain alcohols and long‐chain esters, respectively. Various microspheres with different morphologies were obtained, depending on the composition of the oil phase. The spherical poly(styrene‐co‐methyl methacrylate) particles without phase separation were obtained when using an adequate amount of the crosslinking agent and methyl palmitate as an additive. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1013–1028, 2000  相似文献   

18.
李朝  王帅 《广东化工》2012,39(14):15-17,19
文章以简单立方体堆积模型作为纳米颗粒在分散体系中的分散模型,分析了纳米颗粒的体积百分含量和质量百分含量与纳米颗粒的颗粒间距离和粒径的关系,制备了1 wt%,2 wt%,10 wt%的纳米CaCO3悬浮液。透射电镜显示纳米CaCO3分散均匀,未出现团聚。模型及实验结果表明颗粒间距离为粒径的2-3倍时,纳米颗粒分散均匀并保持稳定。对于平均粒径为40 nm的纳米CaCO3,悬浮液的最佳质量百分含量为10%左右。  相似文献   

19.
In this study, the effects of impeller rotation speed, off‐bottom clearance, blade angle, types of solid and liquid, etc., on the suspension pattern of sedimentary particles and particle rise height in liquid were investigated with a hemispherical vessel without baffles under low particle concentration. The transition conditions of suspension pattern between regimes I and II, and regimes II and III, were observed visually, and their non‐dimensional equations were expressed with an acceptable correlation by varying the above operation factors a great deal. Here, regime I is stagnation of particles on a vessel bottom, II is partial suspension, and III is complete suspension in liquid. The non‐dimensional equation of the maximum particle rise height was also successfully obtained. The combination of the non‐dimensional equations of transition and maximum particle rise height permitted us to determine the adequate solid/liquid mixing operation conditions without collision of particles with device parts.  相似文献   

20.
The on‐line monitoring of the droplet/particle size distributions is very important to ensure the quality and applicability of various products in heterogeneous systems. For this reason, the main objective of the present work was to study the usage of the focused beam reflectance measurement (FBRM) technique for monitoring of liquid–liquid dispersions (styrene dispersion in aqueous solutions) and suspension polymerization of styrene. To do better understand the FBRM technique in these systems, the effects of surfactant concentrations, agitation speed and ambient light were evaluated during the in‐line monitoring of average chord lengths and chord‐length distributions (CLD) at different operation conditions in batch experiments. In addition, a preliminary investigation of the optimal probe position was conducted in the polymerization experiments. It is shown that the FBRM technique is sensitive to variations of particle sizes in the characteristic ranges of particle diameters of typical styrene suspension polymerizations, being useful for monitoring and also control applications that require the on‐line characterization of CLD in real time in liquid–liquid dispersions and polymerization systems. POLYM. ENG. SCI., 56:309–318, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号