首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel class of organic‐inorganic polymer hybrids was developed by melt‐blending up to 50 (v/v) % [about 83 (w/w) %] tin‐based polyphosphate glass (Pglass) and low‐density polyethylene (LDPE) in conventional plastics processing equipment. The liquid‐ and solid‐state rheology of the polymer hybrids was studied under oscillatory shear flow and deformation to understand the behavior of these materials and to accelerate efforts to melt process the Pglass with organic polymers. All the materials were found to be linearly viscoelastic in the range of temperature and frequencies examined and their viscoelastic functions increased with increasing Pglass concentration. The Pglass significantly enhanced the shear‐thinning characteristics of the Pglass‐LDPE hybrid, indicating the presence of nonlinear chemical and physical interactions between the hybrid components. Morphological examination of the materials by scanning electron microscopy revealed interesting evolution of microstructure of the Pglass phase from droplets (or round beads) to elongated and interpenetrating network structures as the glass concentration was increased in the Pglass‐LDPE hybrids. Melt viscosities of the materials were well described by a simple power‐law equation and a Maxwellian (Hookean) model with three relaxation times. Time‐temperature superpositioning (TTS) of the complex viscosity versus frequency data was excellent at 170°C < T < 220°C and the temperature dependencies of the shift factors conformed excellently well to predictions from an Arrhenius‐type relation, enabling calculation of the flow‐activation energies (25–285 kj/mol) for the materials. The beneficial function of the Pglass in the hybrid system was significantly enhanced by pre‐treating the glass with coupling agents prior to incorporating them into the Pglass‐LDPE hybrids.  相似文献   

2.
A novel class of organic‐inorganic polymer hybrids were developed by meltblending up to 50 (v/v) % [about 83 (w/w) %] tin‐based polyphosphate glass (Pglass) and low‐density polyethylene (LDPE) in conventional plastics processing equipment. The creep and recovery behavior of these polymer hybrids at 30°C were studied to understand the effect of the Pglass on the creep resistance of the LDPE. The results suggest that the Pglass acts as a reinforcement and an increase in the Pglass loading leads to significantly lower creep strains. This creep resistance is further enhanced by pretreating the Pglass with coupling agents prior to incorporating them into the Pglass‐LDPE hybrids. The experimental creep compliance of these materials conformed excellently with empirical power‐law equation and a modified Burger's model, suggesting that the materials are linearly viscoelastic under the test conditions.  相似文献   

3.
Ternary blends of low‐density polyethylene (LDPE), polystyrene (PS), and a low Tg tin‐based phosphate glass (Pglass) were prepared at compositions ranging from 0–50 vol% Pglass in which either LDPE or PS was the continuous matrix phase. Differential scanning calorimetry was used to investigate the phase behavior of the pure components, PS‐LDPE blends and binary Pglass‐polymer hybrids. Interesting steady‐shear and transient rheology was observed for the hybrids. In particular, the steady shear viscosity curves for the hybrids of ?Pglass ≤ 30% exhibited unusual, four‐region flow behavior, similar to that of liquid crystalline polymers. Two Newtonian plateaus at low (${\rm \dot \gamma }$ ≤ 0.1 s?1) and moderate (0.4 ≤ ${\rm \dot \gamma }$ ≤ s?1) shear rates connected by two distinct shear‐thinning regimes were apparent. This observed rheology is ascribed to a unique composite morphology of these multi‐component systems. Rheological data on the binary Pglass‐polymer systems suggest that the presence of the Pglass within both PS and LDSE contributes significantly to this unusual behavior, perhaps because of the interfacial behavior between the phases. Micrographs obtained via scanning electron microscopy reveal preferential placement of the Pglass phase dispersed within the PS‐phase and surrounding the LDPE phase. Optical shearing data confirmed the evolution of this microstructure under specific shear conditions.  相似文献   

4.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

5.
In this article, the influence of rosin‐type nucleating agent (Nu–Na) and low density polyethylene (LDPE) on the crystallization process of polypropylene (PP) from the melt state was studied by differential scanning calorimeter and polarization microscope. It was found that LDPE obstructed the crystallization of PP, decreased the crystallization rate of PP. The rosin‐type nucleating agent Nu–Na substantially improved the rate of crystallization, and decreased the size of spherulites also. The cooperative effect of LDPE and Nu–Na made the crystallization rate of PP increase greatly, the spherulites of PP became much smaller and dispersed more uniformly, and the transparency of PP was further improved evidently. The crystallization temperature (Tc) and melting temperature (Tm) of PP and LDPE in PP/LDPE/Nu–Na (97:3:0.5) were not affected by the number of mixed passes—the nuclei migration from PP to PE had not happened in the mixed passes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2804–2809, 2003  相似文献   

6.
Interfacial agents as compatibilizers have recently been introduced into polymer blends to improve the microstructure and mechanical properties of thermoplastics. In this way, it is possible to prepare a mixture of polymeric materials that can have superior mechanical properties over a wide temperature range. In this study, an incompatible blend of polypropylene (PP) and polyamide‐6 (PA6) were made compatible by the addition of 10% styrene–ethylene–butadiene–styrene copolymer (SEBS). The mixing operation was conducted by using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by SEM and DSC techniques. Furthermore, the elastic modulus, tensile and yield strengths, percentage elongation, hardness, melt flow index, Izod impact resistance, heat deflection temperature (HDT), and Vicat softening point values of polymer alloys of various ratios were determined. It was found that the addition of SEBS to the structures decreased the tensile strength, yield strength, elastic modulus, and hardness, whereas it increased the Izod impact strength and percentage elongation values. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3485–3491, 2003  相似文献   

7.
Nanocomposites based on poly(trimethylene terephthalate)‐block‐poly(tetramethylene oxide) (PTT‐PTMO)‐segmented copolymer and COOH‐functionalized single‐walled carbon nanotubes (SWCNTs) were prepared by in situ polymerization method. The obtained nanocomposites were characterized by thermogravimetric analysis, scanning electron microscopy, differential scanning calorimetry (DSC), DMTA, wide‐angle x‐ray scattering (WAXS), small‐angle X‐ray scattering, and tensile testing. The nanocomposites with low SWCNTs loading (<0.5 wt %) shows uniform dispersion of CNT in polymer matrix. As the SWCNTs loading in the nanocomposites increase, the significant improvement of thermo‐oxidative stability was observed. It was found that the nanocomposites have slightly higher degree of crystallinity (determined by DSC and WAXS) of poly(trimethylene terephthalate) (PTT) hard phase than neat PTT‐PTMO copolymer. The melting point of PTT hard phase and glass transition temperature of poly(tetramethylene oxide)‐rich phase were not affected by the presence of CNTs in polymer matrix. The SWCNTs played a role as nucleating agent in PTT‐PTMO matrix, which led to increase in the crystallization rate. Tensile tests showed that the tensile strength of the nanocomposites with 0.05–0.3 wt % loading of SWCNTs have improved tensile strength in comparison to the neat PTT‐PTMO copolymer without reduction elongation at break. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Nylon 12 was successfully synthesized in a twin‐screw extruder via the anionic ring‐opening polymerization of lauryllactam (LL). Maleated low‐density polyethylene (LDPE–MAH) was added to improve the mechanical properties of nylon 12. The in situ blends of nylon 12 and LDPE–MAH were characterized by mechanical testing and scanning electron microscopy. With increasing LDPE–MAH content, the tensile strength and flexural strength decreased, whereas the blend had improved impact strength and achieved supertoughness when the content of LDPE–MAH was 30 wt %. In the in situ formed low‐density polyethylene‐g‐PA12 copolymer, the domain of the LDPE–MAH phase was finely dispersed in the nylon 12 matrix. The good interface between the two phases demonstrated that LDPE–MAH could be used as a macromolecular activator to induce the polymerization of LL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Polymer alloys and blends, whose major advantage is the potential of achieving a range of physical and mechanical properties, have continued to be a subject of interest over recent years. Addition of a block or graft copolymer, with chemically similar segments to those involved in the polymer blend considered, led to a variety of desirable properties. The copolymer added to the blend functioned to promote a homogeneous dispersion of the constituent phases and to enhance their mutual adhesion. Such agents that enable better dispersion in polymer blends are known as compatibilizers. In this study an attempt has been made to improve the compatibility in a polymer blend composed of two normally incompatible constituents, LDPE and PA6, by addition of a compatibilizer. The compatibilizer agent, ethylene vinyl acetate (EVA), was added to the polymer blend in ratios of 1, 5, and 10% by using a twin‐screw extruder. The effect of EVA on the crystallization of the polymer constituents was observed through DSC examinations. Furthermore, the control sample and all three blends of LDPE/PA6/EVA were subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, izod impact strength, hardness, and melt flow index. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1748–1754, 2001  相似文献   

10.
This study was concerned with the structural features and mechanical properties of polypropylene (PP)/low‐density polyethylene (LDPE) blends, which after compounding were modified by the free‐radical grafting of itaconic acid (IA) to produce [PP/LDPE]‐g‐IA in the course of reactive extrusion. To analyze the structural features of the [PP/LDPE]‐g‐IA systems, differential scanning calorimetry and relaxation spectrometry techniques were used. The data were indicative of the incompatibility of PP and LDPE in the [PP/LDPE]‐g‐IA systems on the level of crystalline phases; however, favorable interactions were observed within the amorphous phases of the polymers. Because of these interactions, the crystallization temperature of PP increased by 5–11°C, and that of LDPE increased by 1.3–2.7°C. The rapprochement of their glass‐transition temperatures was observed. The single β‐relaxation peak for the [PP/LDPE]‐g‐IA systems showed that compatibility on the level of structural units was responsible for β relaxation in the homopolymers used. Variations in the ratios of the polymers in the [PP/LDPE]‐g‐IA systems led to both nonadditive and complex changes in the viscoelastic properties as well as mechanical characteristics for the composites. Additions of up to 5 wt % PP strengthened the [PP/LDPE]‐g‐IA blended systems between the glass‐transition temperatures of LDPE and PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1746–1754, 2006  相似文献   

11.
This article reports the toughness improvement of high‐density polyethylene (HDPE) by low‐density polyethylene (LDPE) in oscillating packing injection molding, whereas tensile strength and modulus are greatly enhanced by oscillating packing at the same time. Compared with self‐reinforced pure HDPE, the tensile strength of HDPE/LDPE (80/20 wt %) keeps at the same level, and toughness increases. Multilayer structure on the fracture surface of self‐reinforced HDPE/LDPE specimens can be observed by scanning electron microscope. The central layer of the fracture surface breaks in a ductile manner, whereas the break of shear layer is somewhat brittle. The strength and modulus increase is due to the high orientation of macromolecules along the flow direction, refined crystallization, and shish‐kebab crystals. Differential scanning calorimetry and wide‐angle X‐ray diffraction find cocrystallization occurs between HDPE and LDPE. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 799–804, 1999  相似文献   

12.
An investigation was undertaken on application of dilute chitosan solutions modified by tyrosinase‐catalyzed reaction with 3,4‐dihydroxyphenetylamine (dopamine) to adhesion of the low‐density polyethylene (LDPE) plates surface‐grafted with hydrophilic monomers. Tensile shear adhesive strength effectively increased with an increase in the grafted amount for methacrylic acid‐grafted and acrylic acid‐grafted LDPE (LDPE‐g‐PMAA and LDPE‐g‐PAA) plates. In particular, substrate breaking was observed at higher grafted amounts for LDPE‐g‐PAA plates. The increase in the amino group concentration of the chitosan solutions and molecular mass of the chitosan samples led to the increase in adhesive strength. Adhesive strength of the PE‐g‐PMAA plates prepared at lower monomer concentrations sharply increased at lower grafted amounts, which indicates that the formation of shorter grafted PMAA chains is an effective procedure to increase adhesive strength at lower grafted amounts. Infrared measurements showed that the reaction of quinone derivatives enzymatically generated from dopamine with carboxyl groups was an important factor to increase adhesive strength in addition to the formation of the grafted layers with a high water absorptivity. The above‐mentioned results suggested that enzymatically modified dilute chitosan solutions can be applied to an adhesive to bond polymer substrates. The emphasis is on the fact that water is used as a solvent for preparation of chitosan solutions and photografting without any organic solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Palm kernel shell (PKS), a waste from the oil palm industry, has been utilized as filler in low‐density polyethylene (LDPE) eco‐composites in the present work. The effect of PKS content and coconut oil coupling agent (COCA) on tensile properties, water absorption, and morphological and thermal properties of LDPE/PKS eco‐composites was investigated. The results show the increase of PKS content decreased the tensile strength and elongation at break, but increased the tensile modulus, crystallinity, and water absorption of eco‐composites. The presence of COCA as coupling agent improved the filler‐matrix adhesion yield to increase the tensile strength, tensile modulus, crystallinity, and reduced water absorption of eco‐composites. The better interfacial adhesion between PKS and LDPE with the addition of COCA was also evidenced by scanning electron microscopy studies. J. VINYL ADDIT. TECHNOL., 22:200–205, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
The thermal and mechanical properties of low‐density polyethylene (LDPE), poly(ε‐caprolactone) (PCL), and their blends were evaluated. Differential scanning calorimetry showed that increasing the PCL content of the blend did not change the LDPE melting temperature, but reduced the crystallinity by up to 16.8%. This behavior was related to interactions between the PCL chains and the crystalline phase of LDPE. Tensile strength and elongation at break values for the blends were lower than those for the pure polymers, which suggested an incompatibility between the polymers. The values for Young's modulus under tensile increased when PCL was added to LDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3909–3914, 2004  相似文献   

15.
Polypropylene (PP)/polyamide blends were compatibilized with PP modified with vinylsilane or maleic anhydride and ethylene–propylene random (EPR) copolymer modified with maleic anhydride. The thermal behavior, mechanical properties, and morphology of the blends were investigated. Thermal analysis showed that the polyamide crystallization temperatures shifted downward with all compatibilizers, whereas its melting behavior did not change. On the other hand, polypropylene crystallization temperatures shifted upward in all cases, except for blends containing EPR modified with maleic anhydride. Tensile strength and elongation at break increased for blends compatibilized with modified PP. Blends containing up to 7% of EPR modified with maleic anhydride did not show good yield stresses. The morphology of the blends showed a finer dispersion of the polyamide minor phase in the PP matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2492–2498, 2003  相似文献   

16.
Pineapple leaf fiber (PALF) was used as a reinforcement in polyolefins. Polypropylene (PP) and low‐density polyethylene (LDPE) composites with different fiber lengths (long and short fibers) and fiber contents (0–25%) were prepared and characterized. The results showed that the tensile strength of the composites increased when the PALF contents were increased. It was observed that the composites containing long fiber PALF were stronger than the short fiber composites as determined by greater tensile strength. An SEM study on the tensile fractured surface confirmed the homogeneous dispersion of the long fibers in the polymer matrixes better than dispersion of the short fibers. The unidirectional arrangement of the long fibers provided good interfacial bonding between the PALF and polymer which was a crucial factor in achieving high strength composites. Reduction in crystallinity of the composites, as evident from XRD and DSC studies suggested that the reinforcing effect of PALF played an important role in enhancing their mechanical strength. From the rule of mixtures, the stress efficiency factors of the composite strength could be calculated. The stress efficiency factors of LDPE were greater than those of PP. This would possibly explain why the high modulus fiber (PALF) had better load transfers to the ductile matrix of LDPE than the brittle matrix of PP. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
In this article, the influence of rosin‐type clarifying agent Nu‐(K + Na) and low density polyethylene (LDPE) on the crystallization process of polypropylene (PP) from the melt state was studied by differential scanning calorimeter and polarization microscope, and the effect of rosin‐type clarifying agent Nu‐(K + Na) on the compatibility of PP and LDPE was also investigated by dynamic mechanical analysis and scanning electron microscope. It was found that Nu‐(K + Na) decreased the fold surface energy and promoted the nucleation and crystallization of PP. With the cooperation of LDPE and Nu‐(K + Na) in PP, the chain fold free energy of PP was further decreased substantially, the crystallization rate of PP was increased more markedly, and the spherulites of PP became much smaller and dispersed more uniformly. At the same time, Nu‐(K + Na) improved the compatibility of PP and LDPE, and the LDPE was dispersed in PP more uniformly. Thus, the light scattering originating from the spherulites of PP and the LDPE disperse phase was reduced to great extent, and the transparency of PP was improved evidently. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1568–1575, 2006  相似文献   

18.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号