首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An oriented k-coloring of an oriented graph G is a mapping such that (i) if xyE(G) then c(x)≠c(y) and (ii) if xy,ztE(G) then c(x)=c(t)⇒c(y)≠c(z). The oriented chromatic number of an oriented graph G is defined as the smallest k such that G admits an oriented k-coloring. We prove in this paper that every Halin graph has oriented chromatic number at most 9, improving a previous bound proposed by Vignal.  相似文献   

2.
The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H. The oriented chromatic number of an unoriented graph G is the maximal chromatic number over all possible orientations of G. In this paper, we prove that every Halin graph has oriented chromatic number at most 8, improving a previous bound by Hosseini Dolama and Sopena, and confirming the conjecture given by Vignal.  相似文献   

3.
We prove that there exist oriented planar graphs with oriented chromatic number at least 16. Using a result of Raspaud and Sopena [Inform. Process. Lett. 51 (1994) 171-174], this gives that the oriented chromatic number of the family of oriented planar graphs lies between 16 and 80.  相似文献   

4.
A 2-dipath k-coloring f of an oriented graph is a mapping from to the color set {1,2,…,k} such that f(x)≠f(y) whenever two vertices x and y are linked by a directed path of length 1 or 2. The 2-dipath chromatic number of is the smallest k such that has a 2-dipath k-coloring. In this paper we prove that if is an oriented Halin graph, then . There exist infinitely many oriented Halin graphs such that .  相似文献   

5.
We consider the coloring game and the marking game on graphs with bounded number of cycles passing through any edge. We prove that the game coloring number of a graph G is at most c+4, if every edge of G belongs to at most c different cycles. This result covers two earlier bounds on the game coloring number: for trees (c=0) and for cactuses (c=1).  相似文献   

6.
We prove that the game chromatic and the game colouring number of the class of orientations of cactuses with girth of 2 or 3 is 4. We improve this bound for the class of orientations of certain forest-like cactuses to the value of 3. These results generalise theorems on the game colouring number of undirected forests (Faigle et al., 1993 [3]) resp. orientations of forests (Andres, 2009 [1]). For certain undirected cactuses with girth 4 we also obtain the tight bound 4, thus improving a result of Sidorowicz (2007) [8].  相似文献   

7.
8.
In this paper we propose a limit characterization of the behaviour of classes of graphs with respect to their number of spanning trees. Let {Gn} be a sequence of graphs G0,G1,G2,… that belong to a particular class. We consider graphs of the form KnGn that result from the complete graph Kn after removing a set of edges that span Gn. We study the spanning tree behaviour of the sequence {KnGn} when n→∞ and the number of edges of Gn scales according to n. More specifically, we define the spanning tree indicator ({Gn}), a quantity that characterizes the spanning tree behaviour of {KnGn}. We derive closed formulas for the spanning tree indicators for certain well-known classes of graphs. Finally, we demonstrate that the indicator can be used to compare the spanning tree behaviour of different classes of graphs (even when their members never happen to have the same number of edges).  相似文献   

9.
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of random graphs we show that the distant-2-chromatic number is Θ(logn) with high probability. The result on random geometric graphs is extended to the random sector graphs defined in [J. Díaz, J. Petit, M. Serna. A random graph model for optical networks of sensors, IEEE Transactions on Mobile Computing 2 (2003) 143-154].  相似文献   

10.
A graph G is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the outer face is outerplanar. The oriented chromatic number of an oriented graph H is defined as the minimum order of an oriented graph H such that H has a homomorphism to H. In this paper, we prove that 2-outerplanar graphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a homomorphism to the Paley tournament QR67, which implies that their (strong) oriented chromatic number is at most 67.  相似文献   

11.
We consider the colouring game and the marking game. A graph G is a cactus if any two cycles of G have at most one common vertex. We prove that χg(C)=colg(C)=5 for family of cactuses C.  相似文献   

12.
A Hamiltonian cycle is a spanning cycle in a graph, i.e., a cycle through every vertex, and a Hamiltonian path is a spanning path. In this paper we present two theorems stating sufficient conditions for a graph to possess Hamiltonian cycles and Hamiltonian paths. The significance of the theorems is discussed, and it is shown that the famous Ore's theorem directly follows from our result.  相似文献   

13.
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)?χ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)?2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.  相似文献   

14.
We use transfer matrix methods to determine bounds for the numbers of legal Go positions for various numbers of players on some planar lattice graphs, including square lattice graphs such as those on which the game is normally played. We also find bounds on limiting constants that describe the behaviour of the number of legal positions on these lattice graphs as the dimensions of the lattices tend to infinity. These results amount to giving bounds for some specific evaluations of Go polynomials on these graphs.  相似文献   

15.
Let γ(G) denote the domination number of a digraph G and let CmCn denote the Cartesian product of Cm and Cn, the directed cycles of length m,n?2. In this paper, we determine the exact values: γ(C2Cn)=n; γ(C3Cn)=n if , otherwise, γ(C3Cn)=n+1; if , otherwise, .  相似文献   

16.
Let G be a simple and undirected graph. By mi(G) we denote the number of maximal independent sets in G. Erd?s and Moser posed the problem to determine the maximum cardinality of mi(G) among all graphs of order n and to characterize the corresponding extremal graphs attaining this maximum cardinality. The above problem has been solved by Moon and Moser in [J.W. Moon, L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28]. More recently, Jin and Li [Z. Jin, X. Li, Graphs with the second largest number of maximal independent sets, Discrete Mathematics 308 (2008) 5864-5870] investigated the second largest cardinality of mi(G) among all graphs of order n and characterized the extremal graph attaining this value of mi(G). In this paper, we shall determine the third largest cardinality of mi(G) among all graphs G of order n. Additionally, graphs achieving this value are also determined.  相似文献   

17.
We introduce a new generalization of the on-line coloring game. We define the concept of bounded family for on-line t-relaxed colorings. This extends the concept of on-line competitive coloring algorithms to t-relaxed colorings. We characterize the trees T for which the family of T-free graphs is bounded and show that the corresponding bounding function is linear.  相似文献   

18.
An l-facial coloring of a plane graph is a vertex coloring such that any two different vertices joined by a facial walk of length at most l receive distinct colors. It is known that every plane graph admits a 2-facial coloring using 8 colors [D. Král, T. Madaras, R. Škrekovski, Cyclic, diagonal and facial coloring, European J. Combin. 3-4 (26) (2005) 473-490]. We improve this bound for plane graphs with large girth and prove that if G is a plane graph with girth g?14 (resp. 10, 8) then G admits a 2-facial coloring using 5 colors (resp. 6, 7). Moreover, we give exact bounds for outerplanar graphs and K4-minor free graphs.  相似文献   

19.
A generalization of the Roy-Gallai theorem is presented: it is based on the existence in any oriented graph of a stable set S such that for any node w not in S there is an elementary path from some node of S to w. The bound obtained improves earlier results by Berge and by Li.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号