共查询到20条相似文献,搜索用时 0 毫秒
1.
Selective catalytic reduction of NO x by C 3H 6 in the presence of H 2 over Ag/Al 2O 3 was investigated using in situ DRIFTS and GC–MS measurements. The addition of H 2 promoted the partial oxidation of C 3H 6 to enolic species, the formation of –NCO and the reactions of enolic species and –NCO with NO x on Ag/Al 2O 3 surface at low temperatures. Based on the results, we proposed reaction mechanism to explain the promotional effect of H 2 on the SCR of NO x by C 3H 6 over Ag/Al 2O 3 catalyst. 相似文献
2.
The selective catalytic reduction (SCR) of NO by hydrocarbon is an efficient way to remove NO emission from lean-burn gasoline and diesel exhaust. In this paper, a thermally and hydrothermally stable Al–Ce-pillared clay (Al–Ce-PILC) was synthesized and then modified by SO 42−, whose surface area and average pore diameter calcined at 773 K were 161 m 2/g and 12.15 nm, respectively. Copper-impregnated Al–Ce-pillared clay catalyst (Cu/SO 42−/Al–Ce-PILC) was applied for the SCR of NO by C 3H 6 in the presence of oxygen. The catalyst 2 wt% Cu/SO 42−/Al–Ce-PILC showed good performance over a broad range of temperature, its maximum conversion of NO was 56% at 623 K and remained as high as 22% at 973 K. Furthermore, the presence of 10% water slightly decreased its activity, and this effect was reversible following the removal of water from the feed. Py-IR results showed SO 42− modification greatly enhanced the number and strength of Brönsted acidity on the surface of Cu/SO 42−/Al–Ce-PILC, which played a vital role in the improvement of NO conversion. TPR and XPS results indicated that both Cu + and isolated Cu 2+ species existed on the optimal catalyst, mainly Cu +, as Cu content increased to 5 wt%, another species CuO aggregates which facilitated the combustion of C 3H 6 were formed. 相似文献
3.
The effectiveness of Ag/Al 2O 3 catalyst depends greatly on the alumina source used for preparation. A series of alumina-supported catalysts derived from AlOOH, Al 2O 3, and Al(OH) 3 was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–vis) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, O 2, NO + O 2-temperature programmed desorption (TPD), H 2-temperature programmed reduction (TPR), thermal gravimetric analysis (TGA) and activity test, with a focus on the correlation between their redox properties and catalytic behavior towards C 3H 6-selective catalytic reduction (SCR) of NO reaction. The best SCR activity along with a moderated C 3H 6 conversion was achieved over Ag/Al 2O 3 (I) employing AlOOH source. The high density of Ag–O–Al species in Ag/Al 2O 3 (I) is deemed to be crucial for NO selective reduction into N 2. By contrast, a high C 3H 6 conversion simultaneously with a moderate N 2 yield was observed over Ag/Al 2O 3 (II) prepared from a γ-Al 2O 3 source. The larger particles of Ag mO ( m > 2) crystallites were believed to facilitate the propene oxidation therefore leading to a scarcity of reductant for SCR of NO. An amorphous Ag/Al 2O 3 (III) was obtained via employing a Al(OH) 3 source and 500 °C calcination exhibiting a poor SCR performance similar to that for Ag-free Al 2O 3 (I). A subsequent calcination of Ag/Al 2O 3 (III) at 800 °C led to the generation of Ag/Al 2O 3 (IV) catalyst yielding a significant enhancement in both N 2 yield and C 3H 6 conversion, which was attributed to the appearance of γ-phase structure and an increase in surface area. Further thermo treatment at 950 °C for the preparation of Ag/Al 2O 3 (V) accelerated the sintering of Ag clusters resulting in a severe unselective combustion, which competes with SCR of NO reaction. In view of the transient studies, the redox properties of the prepared catalysts were investigated showing an oxidation capability of Ag/Al 2O 3 (II and V) > Ag/Al 2O 3 (IV) > Ag/Al 2O 3 (I) > Ag/Al 2O 3 (III) and Al 2O 3 (I). The formation of nitrate species is an important step for the deNO x process, which can be promoted by increasing O 2 feed concentration as evidenced by NO + O 2-TPD study for Ag/Al 2O 3 (I), achieving a better catalytic performance. 相似文献
4.
Co/ZSM-5 catalysts were prepared by several methods, including wet ion exchange (WIE), its combination with impregnation (IMP), solid state ion exchange (SSI) and sublimation (SUB). FTIR results show that the zeolite protons in H-ZSM-5 are completely removed when CoCl 2 vapor is deposited. TPR shows peaks for Co 2+ ions at 695–705°C and for Co 3O 4 at 385–390°C, but a peak in the 220–250°C region appears to indicate Co 2+ oxo-ions. The catalysts have been tested for the selective reduction of NOx with iso-C4H10 under O2-rich conditions and in the absence of O2, both with dry and wet feeds. A bifunctional mechanism appears to operate at low temperature: oxo-ions or Co3O4 clusters first oxidize NO to NO2, which is chemisorbed as NOy (y≥2) and reduced. In this modus operandi catalyst SUB shows the highest N2 yield 90% near 390°C for dry and wet feeds. It is found to be quite stable in a 52 h run with a wet feed. In contrast, the WIE catalyst, which mainly contains isolated Co2+ ions and has poor activity below 400°C, excels at T>430°C. This and the observation that, at high temperature, NO is reduced in O2-free feeds over Co/MFI catalysts, suggest that NO can be reduced over Co2+ ions without intermediate formation of NO2. The bifunctional mechanism at low temperature is supported by the fact that a strongly enhanced performance is obtained by mixing WIE with Fe/FER, a catalyst known to promote NO2 formation. 相似文献
5.
Reaction activities of several developed catalysts for NO oxidation and NO x (NO + NO 2) reduction have been determined in a fixed bed differential reactor. Among all the catalysts tested, Co 3O 4 based catalysts are the most active ones for both NO oxidation and NO x reduction reactions even at high space velocity (SV) and low temperature in the fast selective catalytic reduction (SCR) process. Over Co 3O 4 catalyst, the effects of calcination temperatures, SO 2 concentration, optimum SV for 50% conversion of NO to NO 2 were determined. Also, Co 3O 4 based catalysts (Co 3O 4-WO 3) exhibit significantly higher conversion than all the developed DeNO x catalysts (supported/unsupported) having maximum conversion of NO x even at lower temperature and higher SV since the mixed oxide Co-W nanocomposite is formed. In case of the fast SCR, N 2O formation over Co 3O 4-WO 3 catalyst is far less than that over the other catalysts but the standard SCR produces high concentration of N 2O over all the catalysts. The effect of SO 2 concentration on NO x reduction is found to be almost negligible may be due to the presence of WO 3 that resists SO 2 oxidation. 相似文献
6.
The adsorption and transformation of ammonia over V 2O 5, V 2O 5/TiO 2, V 2O 5-WO 3/TiO 2 and CuO/TiO 2 systems has been investigated by FT-IR spectroscopy. In all cases ammonia is first coordinated over Lewis acid sites and later undergoes hydrogen abstraction giving rise either to NH 2 amide species or to its dimeric form N 2H 4, hydrazine. Other species, tentatively identified as imide NH, nitroxyl HNO, nitrogen anions N 2− and azide anions N 3− are further observed over CuO/TiO 2. The comparison of the infrared spectra of the species arising from both NH 3 and N 2H 4 adsorbed over CuO/TiO 2 strongly suggest that N 2H 4 is an intermediate in NH 3 oxidation over this active selective catalytic reduction (SCR) and selective catalytic oxidation (SCO) catalysts. This implies that ammonia is activated in the form of NH 2 species for both SCR and SCO, and it can later dimerize. Ammonia protonation to ammonium ion is detected over V 2O 5-based systems, but not over CuO/TiO 2, in spite of the high SCR and SCO activity of this catalyst. Consequently Brönsted acidity is not necessary for the SCR activity. 相似文献
7.
Conversion of NO x with reducing agents H 2, CO and CH 4, with and without O 2, H 2O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450–500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2/CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4, 500 ppm NO, 5% O 2, 10% H 2O (0–1% H 2), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2, CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. 相似文献
8.
Kinetic and in situ spectroscopic studies of Co–Pt/MFI and Co–Pt/HY catalysts for the selective reduction of NO x with propylene in the presence of oxygen were carried out. The results of catalytic tests of Co–Pt/MFI showed that the addition of Pt to Co based catalyst improved the activity, but a small increase in selectivity to N 2O (15–20%) was observed. In the case of Co–Pt/HY catalyst, the addition of Pt improved the activity more significantly and however, a larger increase in selectivity to N 2O (6–72%) was obtained. It was also found from the results of FT-IR studies of Co–Pt/MFI that the reduction of NO to N 2 was as follows: firstly the oxidation of NO to NO 2 occurred over metallic Pt and NO 2 forms Co–NO 2, Co–ONO, and/or Co–ONO 2; secondly, the partial oxidation of C 3H 6 was happened over Brønsted acid sites and the reaction of NO 2 formed on Co sites with partial oxidized C 3H 6 produced organo-nitro species. These species were dehydrated and isomerized to form isocyanate. Finally, [NCO] type intermediates react with NO from gas phase to selectively yield N 2. 相似文献
9.
The effect of the addition of a second fuel such as CO, C 3H 8 or H 2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO 3/La-γAl 2O 3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C 3H 8 and H 2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H 2≥C 3H 8>CH 4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH 4 when pure methane or CO/CH 4 mixtures are used. For H 2/CH 4 and C 3H 8/CH 4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH 4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures. Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners. 相似文献
10.
The effect of Co content on the catalytic activity of CoSiBEA zeolites in the selective catalytic reduction (SCR) of NO with ethanol is investigated. The Co xSiBEA zeolites ( x = 0.3, 0.7, 3.6 and 6.75 Co wt.%) are prepared by a two-step postsynthesis method which allows to control the introduction of cobalt into zeolite and thus to obtain catalysts with specific Co sites. The nature of the active sites is characterized by XRD, diffuse reflectance UV–vis, H 2-TPR and XPS. The catalytic activity of CoxSiBEA strongly depends on the nature and environment of Co species. Zeolites with isolated lattice tetrahedral Co(II) (Co0.3SiBEA and Co0.7SiBEA samples) are active in SCR of NO with ethanol with selectivity toward N2 exceeding 85% for NO conversion from 20 to 70%. When additional isolated extra-lattice octahedral Co(II) species appear (Co3.6SiBEA sample), the full oxidation of ethanol by dioxygen becomes a very important reaction pathway. In presence of additional cobalt oxides (Co6.75SiBEA sample), the activity and selectivity toward N2 substantially change and full oxidation of ethanol to CO2 is the main reaction pathway and full NO oxidation also takes place in the temperature range 550–775 K. The lack of correlation between the activity in SCR of NO with ethanol and NO oxidation to NO2 suggests that the two reactions are more competitive than sequential. 相似文献
11.
Fe/ZSM-5 catalysts prepared by sublimation of FeCl 3 onto H/ZSM-5 catalyze the selective reduction of NO x by hydrocarbons to N 2. The order of the relative rates and N 2 yields obtained with different alkanes reveals a non-trivial chemistry. The maximum yield is lower for propane than for n-butane but about the same for n- and iso-butane. However, at temperatures below this maximum, the N 2 yield is higher for propane and n-butane than for iso-butane. Deposits are formed on the catalyst that contain N atoms in a low-oxidation state which are able to react with NO 2 to form N 2. TPO and FTIR results show that the amount and also the character of the deposits depend on the nature of alkanes. The change of the oxidation state of nitrogen from a high value in NO or NO 2 to a lower value in nitrile and amino groups of the deposit is rationalized by applying mechanistic concepts of organic chemistry, including the Beckmann rearrangement and fragmentation. FTIR spectra and the observed oxygen- and nitrogen-containing compounds by GC-MS are potential clues to the reaction mechanism. 相似文献
12.
Hydrothermal stability of mordenite type catalysts including synthetic (CuHM) and natural (CuNZA) zeolites has been examined under a simulated lean NO x wet condition. When the catalysts were hydrothermally aged at 800°C with 10% H 2O for 6 h, the NO removal activity at the reaction temperature of 450°C was higher for natural zeolite than for synthetic one. It was mainly due to the Si/Al ratio of the catalyst. CuHM and CuNZA catalysts were dealuminated to investigate the effect of Si content of the zeolites on the hydrothermal stability. After the aging at 800°C for 24 h in the presence of 10% H 2O, NO removal activity of the dealuminated CuHM catalysts at the reaction temperature of 500°C was in the order of the Si/Al ratio of the catalysts. Such a significant improvement of the deNO x performance was also observed for the dealuminated CuNZA catalysts. It reveals that the Si/Al ratio of zeolite catalysts is one of the crucial characteristics enhancing the water tolerance and hydrothermal stability of the catalysts for NO reduction under the lean NO x wet condition. In addition, the loss of NO removal activity of the catalysts upon the hydrothermal aging is mainly attributed to the chemical alteration of Cu 2+ ions on the catalyst surface through the structural collapse of the zeolite catalysts. 相似文献
13.
Molybdenum impregnated HZSM-5 zeolite catalysts with MoO 3 loading from 1 to 8 wt.% were studied in detail for the selective catalytic reduction (C 2H 2-SCR) of NO by acetylene. A 83.9% of NO could be removed by the reductant at 350 °C under 1600 ppm of NO, 800 ppm of C 2H 2 and 9.95% of O 2 in He over 2%MoO 3/HZSM-5 catalyst with a specific activity of in NO elimination and the competitiveness factor (c.f.) of 33.6% for the reductant. The NO elimination level and the c.f. value were ca. 3–4 times as high as those using methane or propene as reductant over the catalyst in the same reaction condition. About same reaction rate was estimated in NO oxidation as that in the NO reduction over each xMoO 3/HZSM-5 ( x = 0–8%) catalyst, which confirms that NO 2 is a crucial intermediate for the aimed reaction over the catalysts. Appropriate amount of Mo incorporation to HZSM-5 considerably enhanced the title reaction, both by accelerating the intermediate formation and by strengthening the adsorption NO x on the catalyst surface under the reaction conditions. Rather lower adsorption tendency of acetylene compared with propene on the catalysts explains the catalyst's steady performance in the C 2H 2-SCR of NO and rapid deactivation in the C 3H 6-SCR of NO. 相似文献
14.
The reduction of NO by propene in the presence of excess oxygen over mechanical mixtures of Au/Al 2O 3 with a bulk oxide has been investigated. The oxides studied were: Co 3O 4, Mn 2O 3, Cr 2O 3, CuO, Fe 2O 3, NiO, CeO 2, SnO 2, ZnO and V 2O 5. Under lean C 3H 6-SCR conditions, these oxides (with the exception of SnO 2) convert selectively NO to NO 2. When mechanically mixed with Au/Al 2O 3, the Mn 2O 3 and Co 3O 4 oxides and, to a much greater extent, CeO 2 act synergistically with this catalyst greatly enhancing its SCR performance. It was found that their synergistic action is not straightforwardly related to their activity for NO oxidation to NO 2. The exhibited catalytic synergy may be due to the operation of either remote control or a bifunctional mechanism. In the later case, the key intermediate must be a short-lived compound and not the NO 2 molecule in gas-phase. 相似文献
15.
The selective catalytic reduction (SCR) of NO by C 3H 6 in excess oxygen was evaluated and compared over Ag/Al 2O 3 and Cu/Al 2O 3 catalysts. Ag/Al 2O 3 showed a high activity for NO reduction. However, Cu/Al 2O 3 showed a high activity for C 3H 6 oxidation. The partial oxidation of C 3H 6 gave surface enolic species and acetate species on the Ag/Al 2O 3, but only an acetate species was clearly observed on the Cu/Al 2O 3. The enolic species is a more active intermediate towards NO + O 2 to yield—NCO species than the acetate species on the Ag/Al 2O 3 catalyst. The Ag and Cu metal loadings and phase changes on Al 2O 3 support can affect the activity and selectivity of Ag/Al 2O 3 and Cu/Al 2O 3 catalysts, but the formation of enolic species is the main reason why the activity of the Ag/Al 2O 3 catalyst for NO reduction is higher than that of the Cu/Al 2O 3 catalyst. 相似文献
16.
Operating the SCR DeNO x reactor at temperatures below 200 °C results in a considerable saving in operating costs. Plant experience shows that on the catalysts in these second generation DeNO x plants, even for flue gases with SO 2 concentration below 10 mg/m 3, over 1–2 years operating time sizeable quantities of ammonium sulfates accumulate. Ammonium sulfates deposited on V 2O 5–WO 3/TiO 2 catalysts react with NO x to nitrogen and sulfuric acid. Second-order rate constants of this reaction for temperatures of 170 °C have been derived. It could be shown that the sulfuric acid formed on the catalyst is displaced by water vapour and desorbs resulting in gas phase concentrations of up to 6.5 mg acid/m 3 flue gas. Plant equipment downstream of the ammonium sulfate containing low temperature DeNO x catalysts has to be protected against the corrosive action of the sulfuric acid in the flue gases leaving the DeNO x reactor. 相似文献
17.
Research results regarding selective catalytic reduction (SCR) of NO x with ethanol and other C 1-4 oxygenates as reductants over silver-alumina catalysts are summarized. The aspects of the process mechanism, nature of active sites, role of alumina and silver (especially in the formation of bifunctional active sites), effects of reductants and reaction conditions are discussed. It has been determined that key stages of the process include formation of reactive enolic species, their interaction with NO x and formation of nitroorganic compounds which transform to NCO ads species and further to N 2. The results obtained over various silver-alumina catalysts demonstrate the perspectives of their application for reducing the level of nitrogen oxides in engine emissions, including in the presence of water vapor and sulfur oxides. Ways to improve the catalysts for the SCR of NO x with C 1-4 oxygenates are outlined. 相似文献
18.
The effect of different reducing agents (H 2, CO, C 3H 6 and C 3H 8) on the reduction of stored NO x over PM/BaO/Al 2O 3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO 2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H 2 and CO have a relatively high NO x reduction efficiency compared to C 3H 6 and especially C 3H 8 that does not show any NO x reduction ability except at 350 °C over Pd/BaO/Al 2O 3. The type of precious metals affects the NO x storage-reduction properties, where the Pd/BaO/Al 2O 3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al 2O 3 catalyst shows a high reduction ability but a relatively low NO x storage capacity. 相似文献
19.
The present study explores the possibilities of catalysts of Ag/Al 2O 3, in which silver has been deposited using reverse microemulsions with the aim of getting maximum dispersion and homogeneity in the active superficial species, for the selective catalytic reduction of NO x in excess of oxygen, using both propene and ethanol as reductants and in the scope of the control of the emissions produced by vehicles that operate in conditions of lean mixture like the diesel engine or those of gasoline direct injection. The promotional effect of the hydrogen presence in the reactive mixture has also been analyzed. For both reductants, when in presence of hydrogen, an important enhancement in NO x conversion is produced, in particular for a catalyst with 3 wt.% silver. The production of acetaldehyde during the reaction employing ethanol is also analyzed and its role on the NO x reduction process has been examined. The interpretation of catalytic properties has been complemented by means of in-situ DRIFTS. 相似文献
20.
In this paper, the effect of CO 2 and H 2O on NO x storage and reduction over a Pt–Ba/γ-Al 2O 3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO 2 and H 2O, NO x is stored on BaCO 3 sites only. Moreover, H 2O inhibits the NO oxidation capability of the catalyst and no NO 2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N 2 as well as complete regeneration of stored NO. In the presence of CO 2, NO is oxidized into NO 2 and more NO x is stored as in the presence of H 2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NO x trapping in the presence of CO 2·NH 3 formation is seen in the rich phase and the selectivity towards N 2 is 83%. Ba(NO 3) 2 is always completely regenerated during the subsequent rich phase. In the absence of CO 2 and H 2O, both surface and bulk barium sites are active in NO x storage. As lean/rich cycling proceeds, the selectivity towards N 2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NO x storage. 相似文献
|