首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shrinkage measurements of miniaturized low temperature co‐fired ceramics (LTCC) samples under load typically lead to collapsing of the samples, which hampers the characterization of shrinkage up to full densification. In this paper, a measurement setup is presented, which allows for in situ shrinkage measurements of practical, large LTCC panels during pressure‐assisted sintering in a sintering press. The shrinkage behavior of two commercial LTCC systems (GreenTape 951 and Ceramtape GC) has been measured under loads of up to 1 MPa. No crushing of the specimens was observed and reproducible characterization of shrinkage up to full densification has been performed. Based on comparisons to thermomechanical analyzer measurements in this and other studies, it was found that the in situ approach is much better suited for shrinkage characterization of LTCC under load. Reproducibility and accuracy of the method are discussed and practical as well as more academic applications are proposed.  相似文献   

2.
A low temperature co‐fired ceramic (LTCC) has been formulated and evaluated for in‐vitro microfluidic sensors and cell culture applications. Using a 75/25 vol% glass to alumina ratio, high density was achieved for sintering temperatures <900°C. No toxicity was observed in the leachate medium obtained by soaking LTCC in cell medium for 5 days. The human umbilical vein endothelial cells (HUVECs) also attached on the fibronectin‐coated LTCC after 14 hours and proliferated after 74 hours. On the basis of these results, the current LTCC formulation is a viable candidate for the continued development of LTCC‐based microfluidic biosensors.  相似文献   

3.
Commercial thick film resistors were embedded in low temperature co-fired ceramic (LTCC) substrates, and co-fired with substrates at temperatures between 800 and 900 °C. Adding glass frit and amorphous SiO2 to calcium borosilicate glass ceramic substrates has not only lowered the shrinkage of the substrates, but also improved adhesion and maintained structure integrity of the resistor films. During sintering, the conductive phase particles in the resistor became agglomerated and sedimented, and glass diffused into the LTCC substrate layer. Increasing the dwelling time, the overall resistivity of the co-fired films decreased due to sedimentation of agglomerated conductive particles. The liquid eutectic phases penetrated into the substrates added with either SiO2 or glass frit that the volume fraction of conductive particles was increased. The resistivity of the embedded resistors was determined by the volume fraction of conductive particles, which was influenced by the conductive particles sedimentation, microstructure of resistor films, and inter-diffusion between the resistors and substrates.  相似文献   

4.
We present a novel and effective method for sintering ceramic coatings onto metallic substrates. This new technique, called Flame‐assisted flash sintering (FAFS), utilizes a flame as both a heating source and a conformal, current‐carrying top electrode to facilitate flash sintering. Using this method, Yttria‐stabilized Zirconia (8 mol% Y, 8YSZ) coatings are sintered onto stainless steel substrates to controlled degrees of porosity in rapid fashion. Flame‐assisted flash sintering utilizes a dynamic soft electrode for flash sintering and has commercial potential to sinter ceramic coatings on complex‐shaped substrates for a variety of applications including tribological or thermal protection coatings.  相似文献   

5.
Materials and processing conditions have been developed allowing co‐firing of fluxed PZT‐SKN materials with commercial low temperature co‐fired ceramic (LTCC) tapes. Previously, Pb(Zr0.53, Ti0.47)O3–Sr(K0.25, Nb0.75)O3 (PZT‐SKN) ceramics fluxed with 1 wt% LiBiO2 and 1 wt% CuO addition were shown to sinter to high density at 900°C for 1 h, with a large d33 piezoelectric coefficient of ~415 pm/V. Currently, the master sintering curve (MSC) approach has been used to study the densification behaviors of fluxed PZT‐SKN and LTCC tapes. Different sintering mechanisms for fluxed PZT‐SKN ceramics and LTCC materials are confirmed by analyzing the apparent activation energy (Qa). Using knowledge gained from MSC results, an optimized sintering profile was developed. Multilayer PZT‐SKN/HL2000 (HeraLock? Tape, Heraeus) stacks co‐fired at 900°C for 0.5 h maintain large piezoelectric coefficient (high field d33 > 340 pm/V). EDS analysis reveal limited interdiffusion of Pb from PZT‐SKN layers in LTCC and the appearance of Al, Ca, and Si in the PZT‐SKN near the PZT‐SKN/LTCC interface. Further, elemental interdiffusion was not detected at the center of piezoelectric layer in PZT‐SKN/LTCC multilayer ceramics and no subsequent reduction in piezoelectric coefficient d33 was observed. Finally, a piezoelectric microbalance with mass sensitivity of 150 kHz/mg was fabricated using the materials and methods developed.  相似文献   

6.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   

7.
The substitution in (Ba0.70Sr0.30)TiO3 thin films by the rare‐earth element dysprosium prepared at 1000°C by chemical solution deposition on nickel foils was investigated. The relatively large thermal budget applied (via annealing temperature) is shown to enhance the solubility of the Dy3+doping ion into the crystal lattice of the perovskite films. Preference for B‐site occupancy of this amphoteric cation was further promoted by the addition of BaO excess (1 mol%), which results in slightly larger grains in the films as observed by scanning electron microscopy. Despite this Ba‐rich composition, the presence of secondary phases in the thin films was not detected by X‐ray diffraction. Transmission electron microscopy revealed no evidence for local segregation of Dy at grain boundaries, neither the formation of NiO at the interface between the film and the metal foil was observed. The substitution of Ti4+ by Dy3+ leads to the formation of strong electron acceptors in the system, which balance the number of ionized oxygen vacancies arisen from the reductive crystallization atmosphere used during processing. As a consequence, the dielectric loss (tan σ) and leakage conduction measured in the resulting thin‐film capacitors were significantly reduced with respect to nominally undoped samples. The improvement of this capacitor feature, combined with the relatively high permittivities obtained in the films (490–530), shows the effectiveness of dysprosium doping within a thin‐film fabrication method for potential application into the multilayer ceramic capacitor technology.  相似文献   

8.
The deformation behaviors of suspended low temperature co-fired ceramic (LTCC) laminates over a cavity and the evolution of open porosity of LTCC are studied for the fabrication of embedded structures in a multi-layer LTCC platform using carbon material. The effects of the type of LTCC materials (self-constrained and unconstrained LTCC), cavity width, laminate thickness, and lamination conditions on the deformation of the suspended LTCC laminate over a cavity are studied. For suspended three-layers and six-layers LTCC laminates over cavity width ranges from 10 to 25 mm, the self-constrained LTCC laminates were more dimensionally stable (sagged by less than ?120 μm) after sintering as compared to the unconstrained LTCC. The evolution of open porosity and the distribution of open pores in the self-constrained LTCC with changes in sintering temperature and laminate thickness are also studied for process optimization.  相似文献   

9.
Design procedure, technology and basic properties of a piezoelectric Low Temperature Co‐fired Ceramics (LTCC) accelerometer are presented in this paper. The sensor consists of a LTCC membrane with a seismic mass. Meggitt InSensor® PZT thick film has been applied as the sensing material. Finite element method (FEM) has been used to analyze the impact of the sensor geometry (membrane thickness, membrane and seismic mass radii) and PZT thick film placement on basic properties (sensitivity and bandwidth) of the device. The LTCC process was optimized in order to create thin and planar ceramic membrane with relatively huge seismic mass. Selected properties of the sensor have been measured and compared with the simulated ones.  相似文献   

10.
This work focuses on silicon oxycarbide thin film preparation and characterization. The Taguchi method of experimental design was used to optimize the process of film deposition. The prepared ceramic thin films with a thickness of c. 500 nm were characterized concerning their morphology, composition, and electrical properties. The molecular structure of the preceramic polymers used for the preparation of the ceramic thin films as well as the thermomechanical properties of the resulting SiOC significantly influenced the quality of the ceramic films. Thus, an increase in the content of carbon was found beneficial for the preparation of crack-free thin films. The obtained ceramic films exhibited increased electrical conductivity as compared to monolithic SiOC of similar chemical composition. This was shown to correlate with the unique hierarchical microstructure of the SiOC films, which contain large oxygen-depleted particles, mainly consisting of highly graphitized carbon and SiC, homogeneously dispersed in an oxygen-containing amorphous matrix. The matrix was shown to also contain free carbon and to contribute to charge carrier transport between the highly conductive large particles. The ceramic thin films possess electrical conductivities in the range from 5.4 to 8.8 S/cm and may be suitable for implementation in miniaturized piezoresistive strain gauges.  相似文献   

11.
Single‐ and multi‐layer transparent conductive oxide (TCO) thin films exhibiting high performance, good packing density and low surface/interface roughness are deposited on silica glass substrates by the sol–gel method. The crystal and microstructural properties of the TCO thin films are evaluated as an alternate to films prepared by ultra‐high vacuum deposition. Tin‐doped indium oxide (ITO) thin films produced using a two‐step drying process showed low surface roughness because of dense packing structure not only horizontal but also vertical directions. As a result, electrical conductivity, carrier concentration, carrier mobility, and optical transmittance of 2.3 × 103 S/cm, 8 × 1020 cm?3, 18 cm2/Vs, and over 98% at 500 nm, respectively, were achieved. A multilayer ZnO/ITO stacked structure was also fabricated using the sol–gel process. Our findings suggest that solution‐based methods show promise as an alternative to existing ultra‐high vacuum methods to fabricate TCO thin films.  相似文献   

12.
We report a novel oscillatory pressure‐assisted hot‐pressing process for preparing high‐quality ceramics. Compared with the samples prepared by conventional pressureless sintering (PS) and hot‐pressing (HP), the zirconia ceramic prepared by oscillatory pressure‐assisted hot‐pressing (OPAHP) exhibited a higher density, smaller grain size, and more homogeneous structure. More remarkably, the strength of the OPAHP sample reached 1556 MPa, which is much higher than the samples prepared by other two techniques. The results suggest that OPAHP is a more effective technique for preparing high‐quality zirconia, which is likely applicable to other material systems.  相似文献   

13.
A miniature electrostatic thruster is being developed in Low Temperature Co‐fired Ceramic (LTCC) at Boise State University. The thruster is composed of an antenna to create the plasma, a cylinder to contain the plasma, and grids to extract the plasma beam at high velocity. In this work, the development of the inductively coupled plasma (ICP) antenna in LTCC will be presented. This antenna is fabricated using DuPont 951 LTCC tape. A Direct Write dispenser is used to apply silver paste for the spiral ICP antenna. Using LTCC allows for the antenna to be embedded in the device under a thin sheet of LTCC dielectric, which protects the antenna from ion back bombardment during operation. This thin sheet is the seventh layer of the total device, with the ICP antenna one layer below the top. The design of the antenna is based on the research done by J. Hopwood. This article discusses the fabrication and performance of the ICP antennas in LTCC. These ICP antennas are operated at pressures from 10 mTorr to 1 Torr with radio frequencies (RF) of 500 MHz to 1 GHz to inductively couple with low‐pressure argon to produce plasma. The performance of the antennas will be verified with data showing the start and stop power of the plasma at various pressures and an electric field map of the RF field above the antenna.  相似文献   

14.
To reduce power consumption of transparent oxide‐semiconductor thin film transistors, a gate dielectric material with high dielectric constant and low leakage current density is favorable. According to previous study, the bulk TiNb2O7 with outstanding dielectric properties may have an interest in its thin‐film form. The optical, chemical states and surface morphology of sol‐gel derived TiNb2O7 (TNO) thin films are investigated the effect of postannealing temperature lower than 500°C, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non‐lattice oxygen in the TNO film is proposed. The peak area ratio of non‐lattice oxygen plays an important role in the control of leakage current density of MIM capacitors. Also, the capacitance density and dissipation factor were affected by the indium tin oxide (ITO) sheet resistance at high frequencies. The sample after postannealing at 300°C and electrode‐annealing at 150°C possesses a high dielectric constant (>30 at 1 MHz) and a low leakage current density (<1 × 10?6 A/cm2 at 1 V), which makes it a very promising gate dielectric material for transparent oxide‐semiconductor thin film transistors.  相似文献   

15.
Bismuth ferrite, BiFeO3, is an important multiferroic material that has attracted remarkable attention for potential applications in functional devices. While thin films of BiFeO3 are attractive for applications in nanoelectronics, bulk polycrystalline BiFeO3 has great potential as a lead‐free and/or high‐temperature actuator material. However, the actuation mechanisms in bulk BiFeO3 are still to be resolved. Here we report the microscopic origin of electric‐field‐induced strain in bulk BiFeO3 ceramic by means of in situ high‐energy X‐ray diffraction. Quantification of intrinsic lattice strain and extrinsic domain switching strain from diffraction data showed that the strain response in rhombohedral bulk BiFeO3 is primarily due to non‐180° ferroelectric domain switching, with no observable change in the phase symmetry, up to the maximum field used in the study. The origin of strain thus differs from the strain mechanism previously shown in thin film BiFeO3, which gives a similar strain/field ratio as rhombohedral bulk BiFeO3. A strong post‐poling relaxation of switched non‐180° ferroelectric domains has been observed and hypothesized to be due to intergranular residual stresses with a possible contribution from the conductive nature of the domain walls in BiFeO3 ceramics.  相似文献   

16.
Flat and wrinkled La0.7Sr0.3MnO3 (LSMO) thin films were prepared by sol‐gel method, respectively, on Si (001) substrates by adjusting heating rate at drying stage. Wrinkled film has larger grains than flat film. Coercive field (about 27 Oe) of wrinkled film is higher than that of flat film, which is much low as around 5 Oe. Compared with flat films, wrinkled films have larger magnetization, higher Curie temperature (334 K) and peak resistivity temperature (243 K), and lower resistivity (0.18 Ohm·cm at 300 K). The introducing of wrinkles is an efficient way to induce compressive stress in sol‐gel derived polycrystalline LSMO films and enhance the magnetic and electric properties.  相似文献   

17.
《Ceramics International》2016,42(8):9988-9994
CrN and CrZrN ceramic thin films were produced by a planar type reactive sputtering system on glass and stainless steel substrates. We investigated oxidation resistance of CrN and CrZrN ceramic thin films with different Zr contents. The structure of the films at different thermal-annealing temperatures was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The mechanical properties of the films at different thermal-annealing temperatures were measured by nano-indentation. The results of this study showed that the addition of few amount of Zr (0.4 at%), can improve thermal stability of CrZrN ceramic thin film and increase the oxidation temperature of the film from 600 °C to 800 °C. The relatively good oxidation resistance (800 °C) and high hardness of the film with the lowest Zr content, indicates that this film is a good candidate for high temperature applications.  相似文献   

18.
NaCl ceramics were prepared by room‐temperature cold sintering using moistened NaCl powder with 4 wt% water and dry pressing using dehydrated powder. When the applied uniaxial pressure is low, the relative density of dry‐pressed NaCl ceramic is significantly lower than that of cold‐sintered ceramic, while the former is 98.5%‐99.3% and much higher than the latter (94.3%‐94.6%) for high applied pressure of 200‐300 MPa. The uniaxial pressure‐induced plastic deformation dominates the densification of dry‐pressed NaCl ceramic, and also plays a role during cold sintering as well as the dissolution‐precipitation process. The lower density of cold‐sintered NaCl ceramic under high applied pressure is attributed to the trapped water in ceramic body during cold sintering. Besides, the presence of water always promotes the microstructural homogeneity, which is responsible for the much higher Qf value of cold‐sintered NaCl ceramic. The optimal microwave dielectric properties with εr = 5.55, Qf = 49 600 GHz, and τf = ?173 ppm/°C are obtained in cold‐sintered NaCl ceramic under the applied pressure of 300 MPa, indicating that it is a promising candidate as a microwave dielectric material.  相似文献   

19.
Continued reduction in length scales associated with many ferroelectric film‐based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate‐lead titanate (70PMN‐30PT) thin films were studied over the thickness range of 100‐350 nm for the relative contributions to property thickness dependence from interfacial and grain‐boundary low permittivity layers. Epitaxial PMN‐PT films were grown on SrRuO3/(001)SrTiO3, while polycrystalline films with {001}‐Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at high fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC‐biased and temperature‐dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness‐dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.  相似文献   

20.
PZT thick films (PbZr0.53Ti0.47O3 with the addition of 6% PbO and 2% Pb5Ge3O11) with a low sintering temperature were printed and fired on LTCC substrates (951, Du Pont), covered with an alumina barrier layer. The electrical characteristics (remanent polarisation, coercive field, dielectric constant and dielectric loss) of these PZT thick films, together with sets prepared on “unprotected” LTCC substrates and on alumina substrates were compared. Whereas the electrical characteristics of the films on LTCC substrates deteriorated significantly due to interactions between the LTCC substrates and the PZT layers the values obtained for the LTCC/alumina barrier structures were comparable with those on ceramic alumina substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号