首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave dielectric ceramics with the composition of Li2ZnTi3O8 – 4 wt% TiO2 were synthesized by the conventional solid‐state reaction. 4 wt% TiO2 powders with different particles size were added to the Li2ZnTi3O8 ceramic. Then the ceramic samples were sintered at temperatures 1075°C, 1050°C, 1000°C, and 950°C for 4 h. The effect of the particles size of TiO2 additive on the microwave dielectric properties of the ceramics has been investigated. In the study two categories of particles size of TiO2 additive have been used; (i) Nanoparticle (50 nm), (ii) Micron sized (40, 5, 1 μm) powder. X‐ray showed that the TiO2 additive has not solved in the LZT structure and has not almost undergone chemical reaction with the LZT ceramic. The results showed that the addition of TiO2 nanoparticles to the LZT ceramics significantly improved the density and a dense and uniform microstructure and also abnormal grain growth were observed by SEM. The use of TiO2 nanoparticle reduces porosity and leads to an increase in green density. The maximum density was found to be 98.5% of the theoretical density and the best relative permittivity of 28, quality factor of 68000 GHz and τf value of ?2 ppm/°C were obtained for the samples added with 4 wt% of the TiO2 nanoparticles, sintered at 1050°C for 4 h.  相似文献   

2.
选用B2O3-CuO(BC)低熔点复合氧化物作为烧结助剂,采用固相法制备(Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3(CSLST)陶瓷,研究了不同含量的BC对CSLST陶瓷的晶相组成、烧结性能及微波介电性能的影响.研究结果表明:随BC添加量的增多,CSLST陶瓷的烧结温度降低,陶瓷的微波介电常数εr和谐振频率温度系数(Τ)f下降,品质因素Qf明显降低.当BC添加量为5wt%时,在1000℃保温5h可烧结,此时陶瓷具有较佳的微波介电性能:εr=80.4,Q×f=1380 GHz,(Τ)f=- 32.89×10-6/℃.  相似文献   

3.
A new ultra‐low fire glass‐free microwave dielectric material Li3FeMo3O12 was investigated for the first time. Single phase ceramics were obtained by the conventional solid‐state route after sintering at 540°C–600°C. The atomic packing fraction, FWHM of the Ag oxygen‐octahedron stretching Raman mode and Qf values of samples sintered at different temperatures correlated well with each other. The sample with a Lower Raman shift showed a higher dielectric constant. Interestingly, the system also showed a distinct adjustable temperature coefficient of resonant frequency (from ?84× 10?6/°C to 25 × 10?6/°C).  相似文献   

4.
The effects of ZnO and B2O3 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O‐1Nb2O5‐5TiO2 (LNT) ceramics have been investigated. With addition of low‐level doping of ZnO and B2O3, the sintering temperature of the LNT ceramics can be lowered down to near 920°C due to the liquid phase effect. The Li2TiO3ss and the “M‐phase” are the two main phases, whereas other phase could be observed when co‐doping with ZnO and B2O3 in the ceramics. And the amount of the other phase increases with the ZnO content increasing. The addition of ZnO does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the good microwave dielectric properties of εr = 36.4, Q × = 8835 GHz, τf = 4.4 ppm/°C could be obtained for the 1 wt% B2O3 and 4 wt% ZnO co‐doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as internal electrode.  相似文献   

5.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

6.
The effects of Li2O–ZnO–B2O3 (LZB) glass addition on densification and dielectric properties of Ba4(Nd0.85Bi0.15)9.33Ti18O54 (BNBT) have been investigated. At a given ratio of ZnO/B2O3, the glass softening point decreases, but the thermal expansion coefficient and dielectric constant increase with increasing Li2O content in the LZB glass. With 10 vol% LZB glass, the densification temperature reduces greatly from 1300°C for pure BNBT to 875°C–900°C for BNBT + LZB dielectric, and the densification enhancement becomes more significant with increasing Li2O content in the LZB glass. The above result is attributed to a chemical reaction taking place at the interface of LZB/BNBT during firing, which becomes less extensive with increasing Li2O content in the LZB glass. Therefore, more residual LZB glass, which acts as a densification promoter to BNBT, is left with increasing Li2O content. For the LZB glass with a Li2O content in the range 10–30 mol%, the resulting 90 vol% BNBT + 10 vol% LZB microwave dielectric has a dielectric constant of 55–70, product (Q × fr) of quality factor (Q) and resonant frequency (fr) of 1000–3000 GHz at 5–5.79 GHz, and a temperature coefficient of resonant frequency (τf) of 10–60 ppm/°C in the temperature range between 25°C and 80°C.  相似文献   

7.
BaO-Nd2O3-Sm2O3-TiO2四元系微波介质陶瓷   总被引:11,自引:2,他引:9  
本文研究了Bi2O3、PbO及Sm2O3对BaO-Nd2O3-TiO2(简称BNT)系陶瓷材料微波性能的影响.实验表明,在BNT系材料中掺入Bi2O3或PbO可降低材料的频率温度系数τf,但同时也使材料的tgδ增大.采用Sm取代部分Nd,形成BaO-Nd2O3-Sm2O3-TiO2(简称BNST)四元系陶瓷材料,可有效降低材料的τf,改善频率温度稳定性,而不会降低材料的品质因素Q0.当Sm2O3∶Nd2O3=7∶3(mol比)时,可得到εr=80.80,tgδ=2.92×10-4(2.7GHz测),τf=23.63ppm/℃的高性能BNST四元系微波介质陶瓷材料.  相似文献   

8.
Low‐fired cobalt niobate (CoNb2O6) microwave dielectric ceramics were prepared through a developed sol–gel process using Nb2O5·nH2O as starting source. A metal‐dioxo‐bridged complex precursor was described on the basis of FT‐IR spectrum. The crystalline phases of calcined powders were characterized by X‐ray diffraction. Nanosized CoNb2O6 particles with orthorhombic α‐PbO2‐type structure were obtained above 750°C. There was no subsequent phase change upon sintering, and all compounds sintered to at least 94% of theoretical density. At 1000°C/4 h, CoNb2O6 ceramics exhibited εr ~ 21.9, Q × f ~ 66 140 GHz (at 8.9 GHz) and τf ~ ?39.7 ppm/°C, having a good potential for low‐temperature cofired ceramic applications.  相似文献   

9.
According to solid‐state reaction routine, microwave dielectric ceramics of aluminum‐supplanted Ba6?3xNd8+2xTi18O54 (0.5 ≤ x ≤ 0.75) ceramics were synthesized and the effects of composition on microwave dielectric properties were determined. As x value increasing from 0.5 to 0.75, with high‐quality factor values (Q × f > 8000 GHz), both dielectric constant (εr) and temperature coefficient of resonant frequency (τf) dropped. The X‐ray diffraction patterns showed a single phase for all compositions. Typically, the research gained temperature coefficients at resonant frequency around + 10 ppm/°C, while kept high relative permittivity and quality factor value.  相似文献   

10.
本文介绍了目前提高BaO-Ln2O3-TiO2体系微波介质陶瓷热稳定性的几种方法,指出了有待解决的主要问题;而加强对陶瓷结构的理论剖析、寻找合适的添加剂、改进制备工艺等是今后研究工作的重点。  相似文献   

11.
《Ceramics International》2016,42(15):16872-16881
Lithium zinc titanate (Li2ZnTi3O8) anode materials have been successfully synthesized using rutile-TiO2 with different particle sizes as titanium sources via a molten-salt method. Various physical and electrochemical methods are applied to characterize the effects of TiO2 particle sizes on the structures and physicochemical properties of the Li2ZnTi3O8 materials. When the particle size of TiO2 is too small (10 nm), it is difficult to homogeneously mix TiO2 with the other raw materials. Thus, the final product Li2ZnTi3O8 has poor crystallinity, large particle size, small specific surface area, pore volume and average pore diameter, which are disadvantageous to its electrochemical performance. Using TiO2 with the proper particle size of 100 nm as the titanium source, the Li2ZnTi3O8 (R-100-LZTO) with excellent electrochemical performance can be obtained. At 1 A g−1, 175.8 and 163.6 mA h g−1 are delivered at the 1st and the 200th cycles, respectively. The largest capacities of 163, 133.3 and 122.5 mA h g−1 are delivered at 2.5, 5 and 6 A g−1, respectively. The good high-rate performance of the R-100-LZTO originates from the good crystallinity, small particle size, large specific surface area and average pore diameter, low charge-transfer resistance and high Li+ diffusion coefficient.  相似文献   

12.
The formation of a homogeneous Bi8TiO14 phase was successfully achieved in a specimen calcined at 600°C. However, a Bi4Ti3O12 secondary phase also developed in specimens calcined at temperatures higher than 600°C, probably because of Bi2O3 evaporation. For specimens sintered above 800°C, a small amount of the Bi8TiO14 phase melted during sintering, with the liquid phase contributing to the densification of the specimens; however, Bi4Ti3O12 and Bi12TiO20 secondary phases were still formed in these specimens. The microwave dielectric properties of the Bi8TiO14 phase were considerably affected by variations in the microstructure of the specimens. When the sintering temperature exceeded 825°C, the amount of secondary phases increased, and this decreased the density and Q×f values of the specimens. Bi8TiO14 ceramics sintered at 825°C exhibited promising microwave dielectric properties, with εr = 47.4, Q×f = 5370 GHz, and τf = ?16.01 ppm/°C.  相似文献   

13.
The influence of BaCu(B2O5) (BCB) on densification, phases, microstructure and microwave dielectric properties of ZnNb2O6xTiO2 (x = 1.70–1.90) composite ceramics have been investigated. Undoped ZnNb2O6–1.8TiO2 ceramics sintered at 1200°C exhibit temperature coefficient of resonant frequency (τf) ~9.25 ppm/°C. When BaCu(B2O5) was added, the sintering temperature of the ZnNb2O6–1.8TiO2 composite ceramics was effectively reduced to 950°C. The results indicated that the permittivity and Q × f were dependent on the sintering temperature and the amounts of BaCu(B2O5). Addition of 3.0 wt% BaCu(B2O5) in ZnNb2O6–1.8TiO2 ceramics sintered at 950°C showed excellent dielectric properties of εr = 40.9, Q × f = 12,200 GHz (f = 5.015 GHz) and τf = +0.3 ppm/°C.  相似文献   

14.
In this study, the spinel solid solution ceramics (1?x)LiFe5O8xLi2ZnTi3O8 (0 ≤ x ≤ 1) were prepared via the solid‐state reaction method. The phase evolution, sintering behaviors, microstructures, magneto‐dielectric properties, and microwave dielectric properties were systematically investigated. The XRD and SEM analysis indicated that the LiFe5O8 phase and the Li2ZnTi3O8 phase were almost fully soluble in each other at any proportion. Meanwhile, the evidence of ionic substitution has been directly observed at the atomic scale by means of scanning transmission electron microscopy, which is further confirmed by the Raman spectroscopy. Evidence shows that the magnetic and dielectric properties are quite sensitive to the compositions. The optimal results with remarkable magneto‐dielectric properties of μ′ = 38.2, tanδμ = 0.25, ε′ = 19.6, tanδε = 8 × 10?3 at 1 MHz, and ε′ = 19.1, Q × f = 10 400 GHz at about 7 GHz have been obtained in 0.25LiFe5O8–0.75Li2ZnTi3O8 sample. The design of complex spinel solid solution can generate novel magneto‐dielectric single‐phase ceramics combining both high permeability and good dielectric properties, which provides a way in developing multifunctional materials for applications in electronic devices.  相似文献   

15.
Li1.4Al0.4Ti1.6(PO4)3 (LATP) was synthesized using a glass‐ceramics approach through crystallization in a conventional box furnace and a modified microwave furnace. The microstructure of samples that were microwave processed at 1000°C showed a larger average grain size (0.87 μm) when compared with the grain size of conventionally processed samples (0.30 μm) at the same temperature. Microwave processing led to significant enhancement of the conductivity when compared with conventional processing for all crystallization temperatures investigated. The highest total conductivity achieved was of glass microwave processed at 1000°C, with a conductivity of 5.33 × 10?4 S/cm. This conductivity was five times higher than that of LATP crystallized conventionally at the same temperature.  相似文献   

16.
CaMgSi2O6 (CMS) ceramics prepared by the solid-state ceramic route have a sintering temperature of 1300°C/2 h. The sintering temperature of CMS was reduced below the melting point of Ag using low-melting LBS and LMZBS glasses. In the case of CMS+15 wt% LMZBS sintered at 900°C/2 h, the dielectric properties obtained were ɛr=8.2, Qu×f=32,000 GHz (10.15 GHz), and τf=–48 ppm/°C. The CMS+15 wt% LBS composite, sintered at 925°C/2 h, showed ɛr=8, Qu×f=15,000 GHz (10.17 GHz), and τf=–49 ppm/°C. The chemical compatibility of Ag with the ceramic–glass composites was also investigated for low-temperature co-fired ceramic applications.  相似文献   

17.
The Microstructure and microwave dielectric properties of Bi2O3‐deficient Bi12SiO20 ceramics were investigated. A small amount of unreacted Bi2O3 phase melted during sintering at 825°C and assisted with densification and grain growth in all samples. The melted Bi2O3 reacted with remnant SiO2 during cooling to form a Bi4Si3O12 secondary phase. The nominal composition of Bi11.8SiO19.7 ceramics sintered at 825°C for 4 h had a high relative density of 97% of the theoretical density, and good microwave dielectric properties: εr = 39, Q × f = 74 000 GHz, and τf = ?14.1 ppm/°C. Moreover, this ceramic did not react with Ag at 825°C.  相似文献   

18.
高旭芳  丘泰 《硅酸盐通报》2008,27(6):1175-1179
简要叙述了BaO-Ln2O3-TiO2系微波介质陶瓷的结构研究情况,介绍了近年来该体系不同离子A、B位取代对微波介电性能的影响,最后提出了该材料需要进一步解决的问题和发展前景.  相似文献   

19.
近年来随着微波通讯技术与微波集成电路(microwave integrate circuits,MICs)的发展,用于移动通讯、智能运输系统(Intelligent transport system,ITS)、GPS天线的低介电常数低介电损耗的微波介质陶瓷引起了广泛的关注,其中最具代表性的即为Al2O3陶瓷.本文总结了近几年Al2O3陶瓷微波介电性能的研究情况,系统介绍了Al2O3陶瓷微波介电性能的影响因素和目前研究的Al2O3陶瓷体系,希望对于研究Al2O3陶瓷的微波介电性能提供有益的参考,使其在微波通讯等方面得到更广泛的应用.  相似文献   

20.
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (× f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号