首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of electron transfer reaction between cytochrome cd1 nitrite reductase (NiR) from Pseudomonas aeruginosa and various physiological/non physiological redox partners was investigated using cyclic voltammetry at the pyrolytic graphite electrode. While NiR did not exchange electron with the electrode, cytochrome c551 and azurin, both from Ps. aeruginosa, behaved as fast electrochemical systems. The intermolecular electron transfers between NiR and cytochrome c551 or azurin as electron shuttles, in the presence of nitrite, were studied. Second order rate constants of 2×106 and 1.4×105 M−1 s−1 are calculated for cytochrome c551 and azurin, respectively. The dependence of the second-order rate constant on ionic strength and pH is discussed. Finally, the effect of the global charge of the electron shuttles was explored using differently charged species (proteins or small ions). The experimental results suggest involvement of polar interactions as well as of hydrophobic contacts in the protein recognition prior to the intermolecular electron transfer. As the cross-reaction between Ps. nautica cytochrome c552 and Ps. aeruginosa NiR was shown to be as efficient as the catalytic reaction involving the physiological partners, it is concluded to a ‘pseudo-specificity’ in the recognition between NiR and the electron donor.  相似文献   

2.
《Electrochimica acta》1987,32(11):1561-1565
In this paper, the dependence of the change in absorbance on the charge consumed during electrochemical preparation of Prussian blue (PB) film electrode has been studied by in situ spectroelectrochemical technique. Theoretical consideration in chronoabsorptometric spectrum technique is expounded, by which the treatment of PB film electrode has been described. The diffusion coefficient for the electron transfer in the film during the redox reaction, the response time for the optical transition, top, the charging time for the film, tc and the molar absorptivity, ε, are calculated.  相似文献   

3.
A modified electrode Ni(II)-Qu-MWCNT-IL-PE has been fabricated by electrodepositing Ni(II)-quercetin [Ni(II)-Qu] complex on the surface of multi-wall carbon nanotube ionic liquid paste electrode (MWCNT-IL-PE) in alkaline solution. The Ni(II)-Qu-MWCNT-IL-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-Qu-MWCNT-PE. It also shows good electrocatalytic activity toward the oxidation of glucose. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic current presents linear dependence on the concentration of glucose from 5.0 μM to 2.8 mM, with a detection limit of 1.0 μM by amperometry. The modified electrode for glucose determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

4.
The cathodic reduction of ozone was studied at a smooth iridium electrode in acid electrolytes. The rest potentials deviate from the equilibrium values by ?500 to ?600 mV. They are determined by a mixed electrode system involving anodic oxygen evolution and cathodic reduction of ozone as half reactions.Tafel-lines with a slope between 120 and 160 mV (b-value) are obtained when steady state polarization measurements are carried out. Extrapolation of Tafel-lines to zero polarization and the determination of the charge transfer resistance give values for the pseudo-exchange current, which are in good agreement. A single electron transfer reaction is the rate determining step. Cathodic reaction orders of + 1 and zero are evaluated with respect to pO3 and cH+.
The charge transfer step does not involve H+-ions. In a succeeding chemical reaction an instable intermediate HO3 is formed, the decomposition of which occurs in a fast reaction.Limiting currents are observed in a region of high cathodic polarization, which are diffusion controlled.  相似文献   

5.
The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CNx NTs) directly grown on the carbon cloth have been investigated. The CNx NTs directly grown on the carbon cloth (CNx NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CNx NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CNx NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CNx NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.  相似文献   

6.
Natural nano-structural attapulgite clay was purified by mechanical stirring with the aid of ultrasonic wave and its structure and morphology was investigated by XRD and transmission electron microscopy (TEM). Cytochrome c was immobilized on attapulgite modified glassy carbon electrode. The interaction between Cytochrome c and attapulgite clay was examined by using UV-vis spectroscopy and electrochemical methods. The direct electron transfer of the immobilized Cytochrome c exhibited a pair of redox peaks with formal potential (E0′) of about 17 mV (versus SCE) in 0.1 mol/L, pH 7.0, PBS. The electrode reaction showed a surface-controlled process with the apparent heterogeneous electron transfer rate constant (ks) of 7.05 s−1 and charge-transfer coefficient (α) of 0.49. Cytochrome c immobilized on the attapulgite modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide (H2O2). The calculated apparent Michaelis-Menten constant was 470 μmol/L, indicating a high catalytic activity of Cytochrome c immobilized on attapulgite modified electrode to the reduction of H2O2. Based on these, a third generation of reagentless biosensor can be constructed for the determination of H2O2.  相似文献   

7.
Multilayers film of nanostructured gold nanoparticles (AuNPs) has been fabricated based on the layer-by-layer (LBL) technique using a self-assembled monolayer of 5,15-di-[p-(6-mercaptohexyl)-phenyl]-10,20-diphenylporphyrin (trans-PPS2). AuNPs act as physical cross-link points in the multilayers. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are applied to study the formation of the organic-inorganic multilayers film and have determined the electrochemical parameters, i.e., the heterogeneous electron transfer rate constant (Ket). The observed phenomena indicate that the electron transfer (ET) process is affected by material properties and the molecular structure of self-assembled monolayers (SAMs). Using the high sensitivity of ET of ferricyanide to the modification of the gold surface with multilayers film, we select this reaction as a probe to study the different modification stages at this modified electrode. ET is retarded on the trans-PPS2 alternative deposition of layers on the electrode surface and is accelerated on the AuNPs’ layers. SECM images are used to collect surface information in the course of the successive modification process. SECM images obtained from bare and different modification stages show very high resolution with different topographies.  相似文献   

8.
Copper bromide modified copper electrode was prepared and used to electrocatalytic oxidation of ethanol. Scanning electron microscopy and energy dispersive x-ray experiments suggested the formation of thin layer of copper bromide on the copper surface. The j0 for copper bromide modified copper and copper chloride modified copper electrodes are 9.8 and 5.7 folds respectively higher than for that of bare copper electrode. For copper bromide modified copper electrode, the charge transfer coefficient (α) and the number of electrons involved in the rate determining step (nα) were calculated as 0.44 and 1 respectively.  相似文献   

9.
A novel biosensor based on electro-co-deposition of myoglobin (Mb), sodium alginate (SA), Fe3O4-graphene (Fe3O4-GR) composite on the carbon ionic liquid electrode (CILE) was fabricated using Nafion as the film forming material to improve the stability of protein immobilized on the electrode surface, and the modified electrode was abbreviated as Nafion/Mb-SA-Fe3O4-GR/CILE. FT-IR and UV–vis absorption spectra suggested that Mb could retain its native structure after being immobilized in the SA-Fe3O4-GR composite film. The electrochemical behavior of the modified electrode was studied by cyclic voltammetry, and a pair of symmetric redox peaks appeared in the cyclic voltammograms, indicating that direct electron transfer of Mb was realized on the modified electrode, which was ascribed to the good electrocatalytic capability of Fe3O4-GR composite, the good biocompatibility of SA and the synergistic effects of SA and Fe3O4-GR composite. The electrochemical parameters of the electron transfer number (n), the charge transfer coefficient (α) and the electron transfer rate constant (k s) were calculated as 0.982, 0.357 and 0.234 s?1, respectively. The modified electrode exhibited good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) with wide linear range from 1.4 to 119.4 mmol/L, low detection limit as 0.174 mmol/L (3σ), good stability and reproducibility.  相似文献   

10.
The construction by sequential self-assembly process of reproducible, highly stable and pH-responsive redox-active nanostructured arrays of single-walled carbon nanotubes (SWCNTs) integrated with octa(hydroxyethylthio)phthalocyaninatoiron(II) (FeOHETPc) via ester bonds on a gold surface (Au-Cys-SWCNT-FeOHETPc) is investigated and discussed. The successful construction of this electrode is confirmed using atomic force microscopy and X-ray photoelectron spectroscopy as well as from the distinct cyclic voltammetric and electrochemical impedance spectroscopic profiles. The Au-Cys-SWCNT-FeOHETPc electrode exhibited strong dependence on the reaction of the head groups and the pH of the working electrolytes, the surface pKa is estimated as 7.3. The high electron transfer capability of the Au-Cys-SWCNT-FeOHETPc electrode over other electrodes (Au-Cys-SWCNT or the Au-Cys-FeOHETPc or the Au-FeOHETPc) suggests that SWCNT greatly improves the electronic communication between FeOHETPc and the bare gold electrode. The electron transfer rate constant (kapp) of Au-Cys-SWCNT-FeOHETPc in pH 4.8 conditions (∼1.7 × 10−2 cm−2 s−1) over that of the electrode obtained from SWCNT integrated with tetraaminophthalocyninatocobalt(II) (Au-Cys-SWCNT-CoTAPc) (5.1 × 10−3 cm−2 s−1) is attributed to the possible effect of the central metal on the phthalocyanine core and substituents on the peripheral positions of the phthalocyanine rings. We also prove that aligned SWCNT arrays exhibit much faster electron transfer kinetics to redox-active species in solutions compared to the randomly dispersed (drop-dried) SWCNTs.  相似文献   

11.
A novel composite film comprising cationic gemini surfactant butyl-α,ω-bis(dimethylcetylammonium bromide) (C16H33N(CH3)2-C4H8-N(CH3)2C16H33, C16-C4-C16) and ionic liquid 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) has been prepared. The composite film shows good biocompatibility and it can promote the direct electron transfer between hemoglobin (Hb) and glassy carbon (GC) electrode. On the C16-C4-C16 (dissolved in ethanol)-OMIMPF6 film coated GC electrode, the immobilized Hb can exhibit a pair of well-defined, quasi-reversible and stable redox peaks with a formal potential of −0.317 V (vs SCE) in 0.10 M pH 7 phosphate buffer solutions. The electron transfer coefficient (α) of Hb is calculated to be 0.44 and the heterogeneous electron transfer rate constant is 6.08 s−1. With the length of alkyl chains of gemini surfactant increasing and the ethanol concentration rising, the redox peaks of the resulting electrode C16-C4-C16-OMIMPF6-Hb/GC become bigger. The electrode presents good electrocatalytic response to peroxide hydrogen. The kinetic parameters Imax and km for the catalytic reaction are estimated. In addition, UV-vis spectra and reflectance absorption infrared spectra demonstrate that the Hb immobilized in the C16-C4-C16-OMIMPF6 film almost retains the structure of native Hb.  相似文献   

12.
This work presents a method of enhancing the kinetics of the interfacial reaction using 1,3,5-trifluorobenzene (TFB) which is used as an electron acceptor due to its locally biased polarity and as a source of rearranging the layer of the electrolyte around LiCoO2 electrode, not a SEI layer source. The full cells with TFB show a decrease in irreversible capacity loss during the first charge-to-discharge process, regardless of the SEI layer formation, and also show better discharge properties even at high rate conditions. The charge transfer resistance (Rct) of the LiCoO2 half cell with TFB shows the smaller resistance than that of the TFB free half cell, and the activation energy calculated from the Rct was 24.7 kJ/mol for the TFB free half cell and 19.3 kJ/mol for the half cell with TFB. In addition, the film resistance of the half cell with TFB shows higher value when the temperature is below 283 K. Since Rct is related to the transfer resistance of the solvated Li+ ions on the surface of the LiCoO2 electrode, it will help design the electrolyte to improve the transfer velocity of Li+ ions around the cathode electrode for high power Li ion battery.  相似文献   

13.
A new electrochemical method was proposed for the determination of thymine, which relied on the oxidation of thymine at a carbon ionic liquid electrode (CILE) in a pH 5.0 Britton-Robinson buffer solution. CILE was fabricated by using ionic liquid 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole acetate as the binder, which showed strong electrocatalytic ability to promote the oxidation of thymine. A single well-defined irreversible oxidation peak appeared with adsorption-controlled process and enhanced electrochemical response on the CILE, which was due to the presence of high conductive ionic liquid on the electrode. The reaction parameters of thymine were calculated with the electron transfer coefficient (α) as 0.27, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (ks) as 6.87 × 10−6 s−1 and the surface coverage (ГT) as 5.71 × 10−8 mol cm−2. Under the selected conditions the oxidation peak current was proportional to thymine concentration in the range from 3.0 to 3000.0 μM with the detection limit as 0.54 μM (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the thymine detection without the interferences of coexisting substances.  相似文献   

14.
In this paper, Magneli phase Ti4O7 was successfully synthesized using a TiO2 reduction method, and characterized using X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrode coated with this Ti4O7 material showed activities for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). For the ORR, several parameters, including overall electron transfer number, kinetic constants, electron transfer coefficient, and percentage H2O2 production, were obtained using the rotating ring-disk electrode (RRDE) technique and the Koutecky-Levich theory. The overall electron transfer number was found to be between 2.3 and 2.9 in 1, 4, and 6 M KOH electrolytes, suggesting that the ORR process on the Ti4O7 electrode was a mixed process of 2- and 4-electron transfer pathways. Electrochemical durability tests, carried out in highly concentrated KOH electrolyte, confirmed that this Ti4O7 is a stable electrode material, suggesting that it should be a feasible candidate for the air-cathodes of zinc-air batteries. To understand the stability of this material, Raman and XPS spectra were also collected for the Ti4O7 samples before and after the stability tests. The results and analysis revealed that a thin layer of TiO2 formed on the Ti4O7 surface, which may have prevented further oxidation into the bulk of the Ti4O7 electrode.  相似文献   

15.
A novel uracil covalently grafted carbon paste electrode (Ura/CPE) based on electro-deposition of uracil on CPE was prepared for the quantitative determination of nevirapine. The records of electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) in K3Fe(CN)6/K4Fe(CN)6 solution illustrated that uracil grafted on CPE efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. The electrochemical properties of Ura/CPE towards the oxidation of nevirapine were investigated by cyclic voltammetry and differential pulse voltammetry (DPV) in 0.1 M NaOH. The effects of pH and scan rates on the oxidation of nevirapine were studied. The results indicated the participation of the same protons and electrons in the oxidation of nevirapine, and the electrochemical reaction of nevirapine on Ura/CPE is an adsorption-controlled process. Under optimized conditions, the linearity between the oxidation peak current and nevirapine concentration was obtained in the range of 0.1–70.0 μM with detection limit of 0.05 μM and the sensitivity of 2.073 μA mM?1 cm?2 (S/N = 3). The proposed method was also successfully applied to detect the concentration of nevirapine in human serum samples.  相似文献   

16.
This work reports the electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone (TCBQ)/multi-walled carbon nanotubes (MWCNT) immobilized on an edge plane pyrolytic graphite electrode for nicotinamide adenine dinucleotide (NADH) oxidation. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were used to confirms the presence of chloro after the nanotube modification with 2,3,5,6-tetrachloro-1,4-benzoquinone. The surface charge transfer constant, ks, and the charge transfer coefficient for the modified electrode, α, were estimated as 98.5 (±0.6) s−1 and 0.5, respectively. With this modified electrode the oxidation potential of the NADH was shifted about 300 mV toward a less positive value, presenting a peak current much higher than those measured on an unmodified edge plane pyrolytic graphite electrode (EPPG). Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the NADH oxidation reaction involves 2 electrons and a heterogenous rate constant (kobs) of 3.1 × 105 mol−1 l s−1. The detection limit, repeatability, long-term stability, time of response and linear response range were also investigated.  相似文献   

17.
A pair of well-defined and reversible redox peaks was observed for the direct electron transfer (DET) reaction of an immobilized glucose oxidase (GOx) on the surface of a nano-porous glassy carbon electrode at the formal potential (E°′) of −0.439 V versus Ag/AgCl/saturated KCl. The electron transfer rate constant (ks) was calculated to be 5.27 s−1. The dependence of E°′ on pH indicated that the direct electron transfer of the GOx was a two-electron transfer process, coupled with two-proton transfer. The results clearly demonstrate that the nano-porous glassy carbon electrode is a cost-effective and ready-to-use scaffold for the fabrication of a glucose biosensor.  相似文献   

18.
Electrochemical behavior of tetrabutylammonium salts containing tetrafluoroborate (BF4) and hexafluorophosphate (PF6) anionic species in different non-aqueous solvents had been investigated on glassy carbon (GC), boron-doped diamond (BDD) and Pt electrodes. Though both BF4 and PF6 ionic species are considered to be inert, they are found to undergo electrochemical oxidation only on GC electrode rather than BDD and Pt as found out from their anodic peaks in linear sweep and cyclic voltammograms (LSV and CV). The voltammetric peak is influenced by the sweep rate as well as by the concentration of the ionic species and the electron transfer process appears to be diffusion controlled one. The formation of an inhibitory C-F film on the electrode surface during anodic polarization either by potentiostatic or potentiodynamic techniques was clearly established by X-ray photoelectron spectroscopy (XPS) analysis and the charge transfer resistance (θ) is higher under latter conditions than the former. The inhibitory effect of this surface film towards the electron transfer reaction of Fe(CN)6]4−/[Fe(CN)6]3− redox couple using impedance technique reveals that among the high permittivity non-aqueous solvents investigated in this work, CH3CN shows maximum θ value and produces C-F film of optimum thickness than the others. A direct correlation was also found out from the plot of θ versus peak potential Ep and peak current density (ip) obtained from LSV. The mechanism of film formation on GC electrode and the absence of such phenomenon on BDD were explained from the product analysis using 19F nuclear magnetic resonance (NMR) spectra resulting from the constant current electrolysis of BF4 and PF6 ionic species on both electrodes in CH3CN medium.  相似文献   

19.
Cytochrome c oxidase is ubiquitous enzyme involved in the terminal step of respiratory electron transfer process. The unique binuclear copper center containing bis-dithiolato bridges form a valance delocalized [Cu1.5+-Cu1.5+] state of the metal center located at the subunit II of cytochrome c oxidase. This metal center acts as the electron entry site of the enzyme and accepts electrons from cytochrome c. Direct electrochemistry of this binuclear copper center containing the water soluble protein obtained by genetically truncating the membrane bound part of the subunit II from Thermus thermophilus was achieved by favorable orientation of the protein on glassy carbon electrode surface promoting efficient electron transfer in the presence of various surfactants. Very reproducible, Nernstian responses are obtained with CuA. The redox potential and the electrochemical response were enhanced prominently in case of cationic surfactant CTAB indicating that the nature of the surfactant has a significant effect on the microenvironment of the protein-electrode interface. The results have been used to understand the mechanism of electron transfer from cytochrome c to the copper center during the enzymatic reaction.  相似文献   

20.
This paper reports impedance studies of the cathode/electrolyte behaviour in solid oxide fuel cells (SOFC), based on comparative investigation of half-cells with yttria stabilized zirconia (YSZ) electrolyte and different cathode materials: lanthanum strontium manganite (LSM), and composite LSM/YSZ with low ionic conductivity as well as the electron conducting Ag, Pt and Au. For improved impedance data analysis the technique of the differential impedance analysis is applied. It ensures structural and parametric identification without preliminary assumptions about the working model. It is found that despite the low ionic conductivity of LSM, the cathode reaction of the oxide cathode materials is a two-step process including: (i) charge transfer with activation energy of the resistivity Ea increasing with the temperature and (ii) transport of oxygen ions through the bulk of the electrode (rate-limiting stage) with Ea independent on the temperature. For the metal (electron conducting) electrodes, the reaction behaviour is described with one step process with higher Ea at higher temperatures. The activation energy of the electrolyte conductivity decreases with the increase of the temperature. The observed changes in Ea for the electrolyte and the cathode reaction (the charge transfer step for the LSM-based electrodes) appear in the same temperature interval. This interesting coincidence suggests for correlation between the bulk (electrolyte) and surface conduction properties. Approaches for improvement of both the ionic conductivity and the supply with electrons in LSM should be also searched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号